Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Circadian influence in plants more widespread than previously thought

02.07.2003


While picking apart the genetic makeup of the plant Arabidopsis, two Dartmouth researchers made a startling discovery. They found that approximately 36 percent of its genome is potentially regulated by the circadian clock, which is three and a half times more than had previously been estimated.



The study, which appears in the June issue of Plant Physiology, was conducted by C. Robertson McClung, Dartmouth professor of biological sciences, and Todd Michael, a former Dartmouth graduate student who is now a postdoctoral fellow at the Salk Institute in La Jolla, Calif. Their research on circadian-controlled genes contributes to efforts to help improve plant productivity and can possibly lead to growing crops that are more resistant to stressful soil or climate conditions.

McClung and Michael used a technique called "gene trapping" or "enhancer trapping" to measure how much mRNA is produced or synthesized by large sections in the genome. According to McClung, a great deal of gene regulation occurs in the gene’s ability to synthesize mRNA, which then is translated into proteins that perform the critical metabolic activities of a cell.


In this study, the researchers randomly inserted a gene that encodes an easily measurable element, in this case luciferase (the enzyme that makes fireflies glow), into the genome to see what genes would be involved in mRNA synthesis. Luciferase is only expressed when it is inserted adjacent to an active plant gene, and it takes on that native gene’s expression. With this method the researchers found new regions of the genome under circadian control.

"In terms of clock control of mRNA synthesis, it does appear that it’s more widespread than we had estimated," says McClung. "It runs contrary to accepted dogma. It’s a new look at this from a slightly different perspective and it gives a slightly different answer. I think our study points out some of the limitations of microarray analysis."

Previous comprehensive genetic studies utilized microarray analysis and had only measured about 10% of the mRNAs in the organism showing circadian oscillations. Microarray studies look at the total abundance of mRNA, including both synthesis and degradation. McClung and Michael’s measurements focus specifically on the rate of mRNA synthesis.

Questions still remain about the discrepancy between the number of genes whose mRNA synthesis is clock regulated and the number whose mRNA abundance exhibits circadian oscillations.

"The answer might lie with the stability of mRNA; if it’s too stable, then the rhythms disappear because the vast majority of the mRNA persists, leading to a pattern of apparent continuous accumulation," says McClung. "It’s also possible that we picked up orphan circadian elements that aren’t actually regulating anything."

Sue Knapp | EurekAlert!
Further information:
http://www.dartmouth.edu/

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>