Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists take a step nearer to creating an artificial egg using a somatic cell


Madrid, Spain: Scientists believe that they are an important step nearer to success in creating an artificial egg from the combination of the nucleus of a somatic cell and an oocyte which has had its DNA-carrying nucleus removed, a conference of international fertility experts heard today (Tuesday 1 July).

Dr Peter Nagy, from Reproductive Biology Associates, Atlanta, collaborating with the University of Connecticut, USA, told the European Society of Human Reproduction and Embryology annual conference that former approaches to haploidisation[1] using a fully mature oocyte and a resting (interphase) somatic cell had caused misaligned chromosomes during cell division. However, he was confident from his team’s latest experiments that this difficulty could be overcome, even though their new approach also ran into some problems.

"We decided to initiate haploidisation at an earlier stage in the oocyte’s cell cycle, when it was still immature, but this time using a somatic cell in its active (metaphase or G2/M) stage. Essentially, we took the control of the first nuclear division away from the oocyte and gave it to the somatic cell," he said.

The US-Brazilian research team[2] , working with mouse cells, removed the nucleus of the immature oocyte, then transformed the somatic cell from its diploid (46 chromosome or 2n) stage to its next (4n) stage and transferred it to the immature enucleated oocyte (ooplast).

"What we expected by doing this was that the DNA in the somatic cell would condense into chromosomes inside the somatic cell – not in the ooplast – and that the somatic cell would direct the chromosome alignment and initial spindle formation, which would then be normal. The nucleus of the somatic cell, at its second stage of division and correctly assembled, would then undergo chromosome segregation in the ooplast, resulting in twice its diploid nuclear content during in-vitro maturation. As a result of an artificial activation, a second round of chromosome segregation provides the haploid (23 chromosome) normal oocyte content. This is a novel strategy that cannot be used with a mature ooplast because mature ooplasts can support only one round of chromosome segregation."

However, the researchers found that there were still some misaligned chromosomes and problems with the integrity of the spindle – the chromosomes’ ’holding’ mechanism. But, they are confident that these will be overcome.

"This initial set of experiments shows that it is possible to induce haploidisation with our approach," said Dr Nagy. "This is the first time that this has been tried so we are still learning. Now we have to check how frequently the chromosomal problems occur and whether there is an easy solution or whether it is a fundamental difficulty."

But, even in a worst case scenario, he said, it does not mean that they were back to the drawing board because his team was already developing new techniques to overcome the problem.

"I’m really confident – not simply optimistic – that haploidisation will work and if everything goes well we will be able to obtain artificial gametes in one or two years. Even if we encounter more problems it should still be possible within three to five years."

Haploidisation is not cloning because it is the production of a reconstituted egg (which can then be fertilised by the sperm) in a situation where a woman has no eggs of her own. One of the woman’s own somatic cells would be the source of the chromosome-carrying nucleus, which would be transferred into a donated ’shelled-out’ oocyte.

[1] Haploid: a cell with only one set of chromosomes – in humans 23. Only the egg and sperm are haploid.
[2] University of Connecticut, Animal Science, Storrs, USA; Reproductive Biology Associates, Atlanta, USA; Clinical e Centro de Pesquisa em Reprodução Humana Roger Abdelmassih, São Paulo, Brazil.

Further information:
Emma Mason, information officer
Tel: 44-0-1376-563090
Fax: 44-0-1376-563272
Mobile: 44-0-7711-296986

Press Office: (Sunday 29 June -Wednesday 2 July)
Margaret Willson, Emma Mason, Maria Maneiro, Janet Blümli
Tel: 34-917-220-501 or 34-917-220-502
Fax: 34-917-220-503

Margaret Willson | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

New 4-D printer could reshape the world we live in

21.03.2018 | Life Sciences

Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

21.03.2018 | Trade Fair News

Physicists made crystal lattice from polaritons

20.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>