Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists take a step nearer to creating an artificial egg using a somatic cell

01.07.2003


Madrid, Spain: Scientists believe that they are an important step nearer to success in creating an artificial egg from the combination of the nucleus of a somatic cell and an oocyte which has had its DNA-carrying nucleus removed, a conference of international fertility experts heard today (Tuesday 1 July).



Dr Peter Nagy, from Reproductive Biology Associates, Atlanta, collaborating with the University of Connecticut, USA, told the European Society of Human Reproduction and Embryology annual conference that former approaches to haploidisation[1] using a fully mature oocyte and a resting (interphase) somatic cell had caused misaligned chromosomes during cell division. However, he was confident from his team’s latest experiments that this difficulty could be overcome, even though their new approach also ran into some problems.

"We decided to initiate haploidisation at an earlier stage in the oocyte’s cell cycle, when it was still immature, but this time using a somatic cell in its active (metaphase or G2/M) stage. Essentially, we took the control of the first nuclear division away from the oocyte and gave it to the somatic cell," he said.


The US-Brazilian research team[2] , working with mouse cells, removed the nucleus of the immature oocyte, then transformed the somatic cell from its diploid (46 chromosome or 2n) stage to its next (4n) stage and transferred it to the immature enucleated oocyte (ooplast).

"What we expected by doing this was that the DNA in the somatic cell would condense into chromosomes inside the somatic cell – not in the ooplast – and that the somatic cell would direct the chromosome alignment and initial spindle formation, which would then be normal. The nucleus of the somatic cell, at its second stage of division and correctly assembled, would then undergo chromosome segregation in the ooplast, resulting in twice its diploid nuclear content during in-vitro maturation. As a result of an artificial activation, a second round of chromosome segregation provides the haploid (23 chromosome) normal oocyte content. This is a novel strategy that cannot be used with a mature ooplast because mature ooplasts can support only one round of chromosome segregation."

However, the researchers found that there were still some misaligned chromosomes and problems with the integrity of the spindle – the chromosomes’ ’holding’ mechanism. But, they are confident that these will be overcome.

"This initial set of experiments shows that it is possible to induce haploidisation with our approach," said Dr Nagy. "This is the first time that this has been tried so we are still learning. Now we have to check how frequently the chromosomal problems occur and whether there is an easy solution or whether it is a fundamental difficulty."

But, even in a worst case scenario, he said, it does not mean that they were back to the drawing board because his team was already developing new techniques to overcome the problem.

"I’m really confident – not simply optimistic – that haploidisation will work and if everything goes well we will be able to obtain artificial gametes in one or two years. Even if we encounter more problems it should still be possible within three to five years."

Haploidisation is not cloning because it is the production of a reconstituted egg (which can then be fertilised by the sperm) in a situation where a woman has no eggs of her own. One of the woman’s own somatic cells would be the source of the chromosome-carrying nucleus, which would be transferred into a donated ’shelled-out’ oocyte.


Note
[1] Haploid: a cell with only one set of chromosomes – in humans 23. Only the egg and sperm are haploid.
[2] University of Connecticut, Animal Science, Storrs, USA; Reproductive Biology Associates, Atlanta, USA; Clinical e Centro de Pesquisa em Reprodução Humana Roger Abdelmassih, São Paulo, Brazil.

Further information:
Emma Mason, information officer
Tel: 44-0-1376-563090
Fax: 44-0-1376-563272
Mobile: 44-0-7711-296986
Email: wordmason@aol.com

Press Office: (Sunday 29 June -Wednesday 2 July)
Margaret Willson, Emma Mason, Maria Maneiro, Janet Blümli
Tel: 34-917-220-501 or 34-917-220-502
Fax: 34-917-220-503

Margaret Willson | EurekAlert!
Further information:
http://www.eshre.com/

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>