Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find potential stem cells in amniotic fluid – a new source?

30.06.2003


Research by Austrian geneticists has raised the possibility that stem cells[1] could be isolated from amniotic fluid – the protective ’bath water’ that surrounds the unborn baby.



Geneticist Professor Markus Hengstschläger and his team at the University of Vienna have isolated a subgroup of cells from amniotic fluid that express a protein called Oct-4 – known to be a key marker for human pluripotent stem cells.

Reporting the findings today (Monday 30 June) in Europe’s leading reproductive medicine journal Human Reproduction[2], Professor Hengstschläger stressed that the investigation was at an early stage. A lot more work had to be done to verify the finding, and tests were now under way to establish in which direction the cells could be differentiated. However, preliminary experiments have already provided evidence that they can be differentiated into nerve cells.


If, after extensive research these stem cells do prove to have similar potential to embryonic stem cells, ultimately it could reduce the need to use human embryos as a source, thus easing the tensions in this ethically controversial area.

Professor Hengstschläger believes that his team will know within two years what the amniotic cells are capable of becoming. "We have already presented good evidence in this paper for the existence of stem cells in amniotic fluid and we have evidence for neuronal differentiation. The question for the future will be – what can these cells do, in which directions can they be differentiated? Whether these cells have the same potential as embryonic stem cells is a question that can only be answered by a variety of experiments. However, our gene marker analyses demonstrate that they at least appear to resemble embryonic stem cells."

Professor Hengstschläger’s group is the first to identify amniotic fluid as a potential source of pluripotent stem cells although others have previously suggested that amniotic fluid cells might be able to make skin.

To find the cells the researchers examined amniotic fluid taken from routine diagnostic amniocentesis on pregnant women. Genetic tests on 11 independent samples revealed Oct-4 mRNA (messenger RNA) in five of the samples. They went on to test for further indications of their potential and identified stem cell factor (a growth factor), vimentin and the enzyme alkaline phosphatase mRNA expression. All three of these molecules are markers for pluripotent stem cells.

"There is no doubt as to the importance of Oct-4 for the maintenance of stem cells," said Professor Hengstschläger. "Each mammalian pluripotent stem cell line expresses Oct-4, which rapidly disappears when the cells differentiate."

Further tests on the nucleus confirmed that the correct molecule had been analysed and suggested that the Oct-4 protein expression in the amniotic fluid cells was indeed functional.

Professor Hengstschläger said that the fact that only half the amniotic fluid samples were Oct-4 positive and that only 0.1 to 0.5% of cells within these positive samples expressed the Oct-4 transcription factor indicated that there was a distinct sub-population within the amniotic fluid cell sample with the potential to differentiate, rather than indicating that they had simply found a low general background Oct-4 expression. The cells were also shown to have dividing ability because cyclin A – a crucial protein that drives cell division – was present.

"Even if, in due course, we find that this new source of stem cells only have the ability to differentiate into a specific subset of cell lines, this is still an extremely interesting finding," he said. "We believe that our findings, together with the recent demonstration that amniotic fluid can be used for tissue engineering, encourages the further investigation of human amniotic fluid as a putative new source of stem cells with high potency."


###
[1] Stem cells: the body’s master cells. They develop a few days after fertilisation. They have the facility to divide indefinitely and develop into many different specialised cells i.e. they differentiate – becoming the cells that make up all our tissues e.g. skin, blood, muscle, glands, nerves…. Stem cells have become one of the most exciting areas of research because of their ability to be cultured in a laboratory and stimulated with chemicals to become any one of the scores of specialist cells in the body. The vision is that they will one day be used to repair damaged organs, rather than using drugs or transplants. Stems cells consist of three types: totipotent (can become any cell in the body or in the placenta), pluripotent (can become any cell in the body except embryonic membranes) and multipotent (can become a limited number of types of cell).

[2] Oct-4-expressing cells in human amniotic fluid: a new source for stem cell research? Human Reproduction. Vol. 18. No 7. Pp 1489-1493.


Contact (media inquiries only):
Margaret Willson:
Tel: +44-0-153-677-2181
Mobile: +44-0-797-385-3347
Email: m.willson@mwcommunications.org.uk

Professor Markus Hengstschläger:
Tel: +43-14-0400-7847
Mobile: 0-664-500-8297

ESHRE Press Office: (Sunday 29 June -Wednesday 2 July)
Margaret Willson, Emma Mason, Maria Maneiro, Janet Blümli
Tel: + 34-9-722-0501 or +34-91-722-0502
Fax: +34-91-722-0503

Margaret Willson | EurekAlert!
Further information:
http://www3.oup.co.uk/eshre/press-release/jun03.pdf
http://www.eshre.com

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>