Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find potential stem cells in amniotic fluid – a new source?

30.06.2003


Research by Austrian geneticists has raised the possibility that stem cells[1] could be isolated from amniotic fluid – the protective ’bath water’ that surrounds the unborn baby.



Geneticist Professor Markus Hengstschläger and his team at the University of Vienna have isolated a subgroup of cells from amniotic fluid that express a protein called Oct-4 – known to be a key marker for human pluripotent stem cells.

Reporting the findings today (Monday 30 June) in Europe’s leading reproductive medicine journal Human Reproduction[2], Professor Hengstschläger stressed that the investigation was at an early stage. A lot more work had to be done to verify the finding, and tests were now under way to establish in which direction the cells could be differentiated. However, preliminary experiments have already provided evidence that they can be differentiated into nerve cells.


If, after extensive research these stem cells do prove to have similar potential to embryonic stem cells, ultimately it could reduce the need to use human embryos as a source, thus easing the tensions in this ethically controversial area.

Professor Hengstschläger believes that his team will know within two years what the amniotic cells are capable of becoming. "We have already presented good evidence in this paper for the existence of stem cells in amniotic fluid and we have evidence for neuronal differentiation. The question for the future will be – what can these cells do, in which directions can they be differentiated? Whether these cells have the same potential as embryonic stem cells is a question that can only be answered by a variety of experiments. However, our gene marker analyses demonstrate that they at least appear to resemble embryonic stem cells."

Professor Hengstschläger’s group is the first to identify amniotic fluid as a potential source of pluripotent stem cells although others have previously suggested that amniotic fluid cells might be able to make skin.

To find the cells the researchers examined amniotic fluid taken from routine diagnostic amniocentesis on pregnant women. Genetic tests on 11 independent samples revealed Oct-4 mRNA (messenger RNA) in five of the samples. They went on to test for further indications of their potential and identified stem cell factor (a growth factor), vimentin and the enzyme alkaline phosphatase mRNA expression. All three of these molecules are markers for pluripotent stem cells.

"There is no doubt as to the importance of Oct-4 for the maintenance of stem cells," said Professor Hengstschläger. "Each mammalian pluripotent stem cell line expresses Oct-4, which rapidly disappears when the cells differentiate."

Further tests on the nucleus confirmed that the correct molecule had been analysed and suggested that the Oct-4 protein expression in the amniotic fluid cells was indeed functional.

Professor Hengstschläger said that the fact that only half the amniotic fluid samples were Oct-4 positive and that only 0.1 to 0.5% of cells within these positive samples expressed the Oct-4 transcription factor indicated that there was a distinct sub-population within the amniotic fluid cell sample with the potential to differentiate, rather than indicating that they had simply found a low general background Oct-4 expression. The cells were also shown to have dividing ability because cyclin A – a crucial protein that drives cell division – was present.

"Even if, in due course, we find that this new source of stem cells only have the ability to differentiate into a specific subset of cell lines, this is still an extremely interesting finding," he said. "We believe that our findings, together with the recent demonstration that amniotic fluid can be used for tissue engineering, encourages the further investigation of human amniotic fluid as a putative new source of stem cells with high potency."


###
[1] Stem cells: the body’s master cells. They develop a few days after fertilisation. They have the facility to divide indefinitely and develop into many different specialised cells i.e. they differentiate – becoming the cells that make up all our tissues e.g. skin, blood, muscle, glands, nerves…. Stem cells have become one of the most exciting areas of research because of their ability to be cultured in a laboratory and stimulated with chemicals to become any one of the scores of specialist cells in the body. The vision is that they will one day be used to repair damaged organs, rather than using drugs or transplants. Stems cells consist of three types: totipotent (can become any cell in the body or in the placenta), pluripotent (can become any cell in the body except embryonic membranes) and multipotent (can become a limited number of types of cell).

[2] Oct-4-expressing cells in human amniotic fluid: a new source for stem cell research? Human Reproduction. Vol. 18. No 7. Pp 1489-1493.


Contact (media inquiries only):
Margaret Willson:
Tel: +44-0-153-677-2181
Mobile: +44-0-797-385-3347
Email: m.willson@mwcommunications.org.uk

Professor Markus Hengstschläger:
Tel: +43-14-0400-7847
Mobile: 0-664-500-8297

ESHRE Press Office: (Sunday 29 June -Wednesday 2 July)
Margaret Willson, Emma Mason, Maria Maneiro, Janet Blümli
Tel: + 34-9-722-0501 or +34-91-722-0502
Fax: +34-91-722-0503

Margaret Willson | EurekAlert!
Further information:
http://www3.oup.co.uk/eshre/press-release/jun03.pdf
http://www.eshre.com

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>