Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find potential stem cells in amniotic fluid – a new source?

30.06.2003


Research by Austrian geneticists has raised the possibility that stem cells[1] could be isolated from amniotic fluid – the protective ’bath water’ that surrounds the unborn baby.



Geneticist Professor Markus Hengstschläger and his team at the University of Vienna have isolated a subgroup of cells from amniotic fluid that express a protein called Oct-4 – known to be a key marker for human pluripotent stem cells.

Reporting the findings today (Monday 30 June) in Europe’s leading reproductive medicine journal Human Reproduction[2], Professor Hengstschläger stressed that the investigation was at an early stage. A lot more work had to be done to verify the finding, and tests were now under way to establish in which direction the cells could be differentiated. However, preliminary experiments have already provided evidence that they can be differentiated into nerve cells.


If, after extensive research these stem cells do prove to have similar potential to embryonic stem cells, ultimately it could reduce the need to use human embryos as a source, thus easing the tensions in this ethically controversial area.

Professor Hengstschläger believes that his team will know within two years what the amniotic cells are capable of becoming. "We have already presented good evidence in this paper for the existence of stem cells in amniotic fluid and we have evidence for neuronal differentiation. The question for the future will be – what can these cells do, in which directions can they be differentiated? Whether these cells have the same potential as embryonic stem cells is a question that can only be answered by a variety of experiments. However, our gene marker analyses demonstrate that they at least appear to resemble embryonic stem cells."

Professor Hengstschläger’s group is the first to identify amniotic fluid as a potential source of pluripotent stem cells although others have previously suggested that amniotic fluid cells might be able to make skin.

To find the cells the researchers examined amniotic fluid taken from routine diagnostic amniocentesis on pregnant women. Genetic tests on 11 independent samples revealed Oct-4 mRNA (messenger RNA) in five of the samples. They went on to test for further indications of their potential and identified stem cell factor (a growth factor), vimentin and the enzyme alkaline phosphatase mRNA expression. All three of these molecules are markers for pluripotent stem cells.

"There is no doubt as to the importance of Oct-4 for the maintenance of stem cells," said Professor Hengstschläger. "Each mammalian pluripotent stem cell line expresses Oct-4, which rapidly disappears when the cells differentiate."

Further tests on the nucleus confirmed that the correct molecule had been analysed and suggested that the Oct-4 protein expression in the amniotic fluid cells was indeed functional.

Professor Hengstschläger said that the fact that only half the amniotic fluid samples were Oct-4 positive and that only 0.1 to 0.5% of cells within these positive samples expressed the Oct-4 transcription factor indicated that there was a distinct sub-population within the amniotic fluid cell sample with the potential to differentiate, rather than indicating that they had simply found a low general background Oct-4 expression. The cells were also shown to have dividing ability because cyclin A – a crucial protein that drives cell division – was present.

"Even if, in due course, we find that this new source of stem cells only have the ability to differentiate into a specific subset of cell lines, this is still an extremely interesting finding," he said. "We believe that our findings, together with the recent demonstration that amniotic fluid can be used for tissue engineering, encourages the further investigation of human amniotic fluid as a putative new source of stem cells with high potency."


###
[1] Stem cells: the body’s master cells. They develop a few days after fertilisation. They have the facility to divide indefinitely and develop into many different specialised cells i.e. they differentiate – becoming the cells that make up all our tissues e.g. skin, blood, muscle, glands, nerves…. Stem cells have become one of the most exciting areas of research because of their ability to be cultured in a laboratory and stimulated with chemicals to become any one of the scores of specialist cells in the body. The vision is that they will one day be used to repair damaged organs, rather than using drugs or transplants. Stems cells consist of three types: totipotent (can become any cell in the body or in the placenta), pluripotent (can become any cell in the body except embryonic membranes) and multipotent (can become a limited number of types of cell).

[2] Oct-4-expressing cells in human amniotic fluid: a new source for stem cell research? Human Reproduction. Vol. 18. No 7. Pp 1489-1493.


Contact (media inquiries only):
Margaret Willson:
Tel: +44-0-153-677-2181
Mobile: +44-0-797-385-3347
Email: m.willson@mwcommunications.org.uk

Professor Markus Hengstschläger:
Tel: +43-14-0400-7847
Mobile: 0-664-500-8297

ESHRE Press Office: (Sunday 29 June -Wednesday 2 July)
Margaret Willson, Emma Mason, Maria Maneiro, Janet Blümli
Tel: + 34-9-722-0501 or +34-91-722-0502
Fax: +34-91-722-0503

Margaret Willson | EurekAlert!
Further information:
http://www3.oup.co.uk/eshre/press-release/jun03.pdf
http://www.eshre.com

More articles from Life Sciences:

nachricht Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria
29.05.2015 | Carnegie Institution

nachricht Scientists use unmanned aerial vehicle to study gray whales from above
29.05.2015 | NOAA National Marine Fisheries Service

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lasers are the key to mastering challenges in lightweight construction

Many joining and cutting processes are possible only with lasers. New technologies make it possible to manufacture metal components with hollow structures that are significantly lighter and yet just as stable as solid components. In addition, lasers can be used to combine various lightweight construction materials and steels with each other. The Fraunhofer Institute for Laser Technology ILT in Aachen is presenting a range of such solutions at the LASER World of Photonics trade fair from June 22 to 25, 2015 in Munich, Germany, (Hall A3, Stand 121).

Lightweight construction materials are popular: aluminum is used in the bodywork of cars, for example, and aircraft fuselages already consist in large part of...

Im Focus: Solid-state photonics goes extreme ultraviolet

Using ultrashort laser pulses, scientists in Max Planck Institute of Quantum Optics have demonstrated the emission of extreme ultraviolet radiation from thin dielectric films and have investigated the underlying mechanisms.

In 1961, only shortly after the invention of the first laser, scientists exposed silicon dioxide crystals (also known as quartz) to an intense ruby laser to...

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Quasi-sexual gene transfer drives genetic diversity of hot spring bacteria

29.05.2015 | Life Sciences

First Eastern Pacific tropical depression runs ahead of dawn

29.05.2015 | Earth Sciences

Donuts, math, and superdense teleportation of quantum information

29.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>