Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue genetic discovery may aid plants and human medicine

26.06.2003


Findings that two mutated genes alter plant growth and development could result in improved plants and enhanced cancer treatments, according to Purdue University researchers.


This mutant plant is stouter and bushier than a normal plant because of an alteration in two genes related to human multidrug resistance genes. A Purdue University research team led by Angus Murphy is uncovering functions of these genes and the related proteins that could result in heartier plants and improved treatment for human cancers. (Purdue Agricultural Communication photo/Tom Campbell)



In a paper published in Thursday’s (6/26) issue of Nature, the scientists report that these abnormal, or mutant plants are able to reorient themselves in response to light and gravity more rapidly than normal, or "wild type," plants. Apparently plants behave differently in accordance with how a growth hormone moves through them. Because the two genes affecting transport of the hormone are related to human genes that impact the effectiveness of chemotherapy drugs, controlling these genes may allow physicians to better determine the dosage of cancer drugs.

"We now know that if we can modify these genes, we can control the growth of the plant in very specific regions," said Angus Murphy, assistant professor of horticulture and senior author of the paper. "This means we might be able to change the shape of upper portions of a plant or develop a more robust root system."


These genes are related to multidrug resistance (MDR) genes in humans. MDR genes transport anticancer drugs out of cells, rendering the treatment less effective. The genes are designated with capital letters, while the mutated, or altered, genes are designated with small letters (in this case, mdr). Murphy’s research group found and studied the altered genes in the commonly used experimental plant, Arabidopsis(pronounced: Ah-rob-ah-dop-sis).

The Arabidopsis mdr mutations disrupt the accumulation of a protein, PIN1, at the base of cells in the stems of plant embryos, Murphy said. Because PIN1 is an essential part of the system that transports the growth hormone auxin, dislocation of the protein impairs flow of the hormone through the plant. This alters how the plants develop and respond to factors such as light and gravity.

Relocation of PIN1 and selective disruption of auxin transport makes plants bushier and affects fruit production. Transport of auxin to roots is actually enhanced in some mdr mutants, so the same gene modifications may alter root structures to make plants more adaptable to different soil types.

In addition, discovery that MDR-like genes play an integral role in transport of auxin could impact human cancer chemotherapy treatments, Murphy said. Researchers already know that MDRs move the drugs out of cancer cells, but they don’t know what other transport functions they perform or exactly how they work.

"We’re assuming that they work together with other transport proteins to move toxic compounds out of cells, but we don’t really know," Murphy said. "The idea that they could be affecting where those transport proteins go in human cells has tremendous implication for studies in humans as well as plants."

One way to find out more about transport proteins is to find out how a gene affects a plant’s development.

"We learned how these genes function by knocking out the gene," Murphy said. "This is the genetic equivalent of taking a car from the assembly line and just pulling out a particular part. When the car is finished without the part, you see what works and what doesn’t.

"In this case, we have removed two parts with similar functions to find out more about what they do."

Murphy said the research team would like to alter plant growth by changing the gene slightly rather than turning it off altogether. They know that one MDR mutation in another plant species results in plants that are shorter and stockier with a bigger root system than in the wild type. These mutants are more resistant to wind and may be more robust in difficult environments where the soil is poor and the climate is arid.

"Timing is also important," he said "If we can turn these genes on and off at the right times, we may be able to enhance a valuable trait.

"For instance, right now you have to mechanically pinch off chrysanthemums so they will spread, or apply a growth regulator to produce useful ornamental plants from cuttings. If, instead, we could insert a program into the plant to activate or inactivate auxin transport at a particular time and in a particular part of the plant then the plant would automatically become bushier or produce more flowers."

Further research on auxin transport will investigate whether other MDR family members influence PIN1 distribution and also what specific relationships exist between members of the MDR and PIN families of transport proteins.

The other authors of this study were Bosl Noh, now a senior research scientist at Kumho Life and Environmental Science Laboratories in Korea; Anindita Bandyopadhyay, a Purdue horticulture doctoral student; Wendy Peer, Purdue horticulture research scientist; and Edgar Spalding, University of Wisconsin associate professor of botany.

The National Science Foundation provided funding for this research.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu

Source: Angus Murphy, (765) 496-7956, amurphy@hort.purdue.edu

Ag Communications: (765) 494-2722; Beth Forbes, bforbes@aes.purdue.edu

Susan A. Steeves | Purdue News
Further information:
http://www.agriculture.purdue.edu/AgComm/public/agnews/
http://www.hort.purdue.edu/
http://news.uns.purdue.edu/html4ever/030625.Murphy.auxin.html

More articles from Life Sciences:

nachricht Cloud Formation: How Feldspar Acts as Ice Nucleus
09.12.2016 | Karlsruher Institut für Technologie

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Cloud Formation: How Feldspar Acts as Ice Nucleus

09.12.2016 | Life Sciences

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>