Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue genetic discovery may aid plants and human medicine

26.06.2003


Findings that two mutated genes alter plant growth and development could result in improved plants and enhanced cancer treatments, according to Purdue University researchers.


This mutant plant is stouter and bushier than a normal plant because of an alteration in two genes related to human multidrug resistance genes. A Purdue University research team led by Angus Murphy is uncovering functions of these genes and the related proteins that could result in heartier plants and improved treatment for human cancers. (Purdue Agricultural Communication photo/Tom Campbell)



In a paper published in Thursday’s (6/26) issue of Nature, the scientists report that these abnormal, or mutant plants are able to reorient themselves in response to light and gravity more rapidly than normal, or "wild type," plants. Apparently plants behave differently in accordance with how a growth hormone moves through them. Because the two genes affecting transport of the hormone are related to human genes that impact the effectiveness of chemotherapy drugs, controlling these genes may allow physicians to better determine the dosage of cancer drugs.

"We now know that if we can modify these genes, we can control the growth of the plant in very specific regions," said Angus Murphy, assistant professor of horticulture and senior author of the paper. "This means we might be able to change the shape of upper portions of a plant or develop a more robust root system."


These genes are related to multidrug resistance (MDR) genes in humans. MDR genes transport anticancer drugs out of cells, rendering the treatment less effective. The genes are designated with capital letters, while the mutated, or altered, genes are designated with small letters (in this case, mdr). Murphy’s research group found and studied the altered genes in the commonly used experimental plant, Arabidopsis(pronounced: Ah-rob-ah-dop-sis).

The Arabidopsis mdr mutations disrupt the accumulation of a protein, PIN1, at the base of cells in the stems of plant embryos, Murphy said. Because PIN1 is an essential part of the system that transports the growth hormone auxin, dislocation of the protein impairs flow of the hormone through the plant. This alters how the plants develop and respond to factors such as light and gravity.

Relocation of PIN1 and selective disruption of auxin transport makes plants bushier and affects fruit production. Transport of auxin to roots is actually enhanced in some mdr mutants, so the same gene modifications may alter root structures to make plants more adaptable to different soil types.

In addition, discovery that MDR-like genes play an integral role in transport of auxin could impact human cancer chemotherapy treatments, Murphy said. Researchers already know that MDRs move the drugs out of cancer cells, but they don’t know what other transport functions they perform or exactly how they work.

"We’re assuming that they work together with other transport proteins to move toxic compounds out of cells, but we don’t really know," Murphy said. "The idea that they could be affecting where those transport proteins go in human cells has tremendous implication for studies in humans as well as plants."

One way to find out more about transport proteins is to find out how a gene affects a plant’s development.

"We learned how these genes function by knocking out the gene," Murphy said. "This is the genetic equivalent of taking a car from the assembly line and just pulling out a particular part. When the car is finished without the part, you see what works and what doesn’t.

"In this case, we have removed two parts with similar functions to find out more about what they do."

Murphy said the research team would like to alter plant growth by changing the gene slightly rather than turning it off altogether. They know that one MDR mutation in another plant species results in plants that are shorter and stockier with a bigger root system than in the wild type. These mutants are more resistant to wind and may be more robust in difficult environments where the soil is poor and the climate is arid.

"Timing is also important," he said "If we can turn these genes on and off at the right times, we may be able to enhance a valuable trait.

"For instance, right now you have to mechanically pinch off chrysanthemums so they will spread, or apply a growth regulator to produce useful ornamental plants from cuttings. If, instead, we could insert a program into the plant to activate or inactivate auxin transport at a particular time and in a particular part of the plant then the plant would automatically become bushier or produce more flowers."

Further research on auxin transport will investigate whether other MDR family members influence PIN1 distribution and also what specific relationships exist between members of the MDR and PIN families of transport proteins.

The other authors of this study were Bosl Noh, now a senior research scientist at Kumho Life and Environmental Science Laboratories in Korea; Anindita Bandyopadhyay, a Purdue horticulture doctoral student; Wendy Peer, Purdue horticulture research scientist; and Edgar Spalding, University of Wisconsin associate professor of botany.

The National Science Foundation provided funding for this research.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu

Source: Angus Murphy, (765) 496-7956, amurphy@hort.purdue.edu

Ag Communications: (765) 494-2722; Beth Forbes, bforbes@aes.purdue.edu

Susan A. Steeves | Purdue News
Further information:
http://www.agriculture.purdue.edu/AgComm/public/agnews/
http://www.hort.purdue.edu/
http://news.uns.purdue.edu/html4ever/030625.Murphy.auxin.html

More articles from Life Sciences:

nachricht Ambush in a petri dish
24.11.2017 | Friedrich-Schiller-Universität Jena

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>