Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Purdue genetic discovery may aid plants and human medicine

26.06.2003


Findings that two mutated genes alter plant growth and development could result in improved plants and enhanced cancer treatments, according to Purdue University researchers.


This mutant plant is stouter and bushier than a normal plant because of an alteration in two genes related to human multidrug resistance genes. A Purdue University research team led by Angus Murphy is uncovering functions of these genes and the related proteins that could result in heartier plants and improved treatment for human cancers. (Purdue Agricultural Communication photo/Tom Campbell)



In a paper published in Thursday’s (6/26) issue of Nature, the scientists report that these abnormal, or mutant plants are able to reorient themselves in response to light and gravity more rapidly than normal, or "wild type," plants. Apparently plants behave differently in accordance with how a growth hormone moves through them. Because the two genes affecting transport of the hormone are related to human genes that impact the effectiveness of chemotherapy drugs, controlling these genes may allow physicians to better determine the dosage of cancer drugs.

"We now know that if we can modify these genes, we can control the growth of the plant in very specific regions," said Angus Murphy, assistant professor of horticulture and senior author of the paper. "This means we might be able to change the shape of upper portions of a plant or develop a more robust root system."


These genes are related to multidrug resistance (MDR) genes in humans. MDR genes transport anticancer drugs out of cells, rendering the treatment less effective. The genes are designated with capital letters, while the mutated, or altered, genes are designated with small letters (in this case, mdr). Murphy’s research group found and studied the altered genes in the commonly used experimental plant, Arabidopsis(pronounced: Ah-rob-ah-dop-sis).

The Arabidopsis mdr mutations disrupt the accumulation of a protein, PIN1, at the base of cells in the stems of plant embryos, Murphy said. Because PIN1 is an essential part of the system that transports the growth hormone auxin, dislocation of the protein impairs flow of the hormone through the plant. This alters how the plants develop and respond to factors such as light and gravity.

Relocation of PIN1 and selective disruption of auxin transport makes plants bushier and affects fruit production. Transport of auxin to roots is actually enhanced in some mdr mutants, so the same gene modifications may alter root structures to make plants more adaptable to different soil types.

In addition, discovery that MDR-like genes play an integral role in transport of auxin could impact human cancer chemotherapy treatments, Murphy said. Researchers already know that MDRs move the drugs out of cancer cells, but they don’t know what other transport functions they perform or exactly how they work.

"We’re assuming that they work together with other transport proteins to move toxic compounds out of cells, but we don’t really know," Murphy said. "The idea that they could be affecting where those transport proteins go in human cells has tremendous implication for studies in humans as well as plants."

One way to find out more about transport proteins is to find out how a gene affects a plant’s development.

"We learned how these genes function by knocking out the gene," Murphy said. "This is the genetic equivalent of taking a car from the assembly line and just pulling out a particular part. When the car is finished without the part, you see what works and what doesn’t.

"In this case, we have removed two parts with similar functions to find out more about what they do."

Murphy said the research team would like to alter plant growth by changing the gene slightly rather than turning it off altogether. They know that one MDR mutation in another plant species results in plants that are shorter and stockier with a bigger root system than in the wild type. These mutants are more resistant to wind and may be more robust in difficult environments where the soil is poor and the climate is arid.

"Timing is also important," he said "If we can turn these genes on and off at the right times, we may be able to enhance a valuable trait.

"For instance, right now you have to mechanically pinch off chrysanthemums so they will spread, or apply a growth regulator to produce useful ornamental plants from cuttings. If, instead, we could insert a program into the plant to activate or inactivate auxin transport at a particular time and in a particular part of the plant then the plant would automatically become bushier or produce more flowers."

Further research on auxin transport will investigate whether other MDR family members influence PIN1 distribution and also what specific relationships exist between members of the MDR and PIN families of transport proteins.

The other authors of this study were Bosl Noh, now a senior research scientist at Kumho Life and Environmental Science Laboratories in Korea; Anindita Bandyopadhyay, a Purdue horticulture doctoral student; Wendy Peer, Purdue horticulture research scientist; and Edgar Spalding, University of Wisconsin associate professor of botany.

The National Science Foundation provided funding for this research.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu

Source: Angus Murphy, (765) 496-7956, amurphy@hort.purdue.edu

Ag Communications: (765) 494-2722; Beth Forbes, bforbes@aes.purdue.edu

Susan A. Steeves | Purdue News
Further information:
http://www.agriculture.purdue.edu/AgComm/public/agnews/
http://www.hort.purdue.edu/
http://news.uns.purdue.edu/html4ever/030625.Murphy.auxin.html

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>