Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harry Potter and the Ecuadorian flowers

24.06.2003


A new species of the gentian family gets a Potteresque name



Harry Potter’s influence pervades even the science of plant taxonomy at Rutgers, The State University of New Jersey. Lena Struwe, assistant professor of ecology, evolution and natural resources at Rutgers’ Cook College – and a fan of the fictional young wizard – has shared in the discovery of a rare, new jungle plant that now bears a Potteresque name.

The new species, Macrocarpaea apparata, is described by Struwe and Jason Grant of the Université de Neuchâtel in Switzerland in the June 27 issue of Harvard Papers in Botany [8(1): 61-81, 2003]. The species name, apparata, is drawn from the term "to apparate" – as in apparition – a verb used throughout the book, Harry Potter and the Chamber of Secrets. The author, J.K. Rowling, uses it to refer to a wizard’s ability to disappear and reappear elsewhere instantaneously.


In an effort to conserve the world’s deteriorating biodiversity, plant taxonomists investigate and describe what is known to exist and go out in the field to look for new species. Struwe and Grant have been exploring the shrinking rain forests of South America, most recently the tropical, mountainous Andes region in southern Ecuador.

"Much of the original forest is now gone because trees have gone to lumber and vegetation has been burned to clear pastureland," said Struwe. "In Ecuador alone, a recent estimate is that 83 percent of all plant species are threatened with extinction, a much higher percentage than we previously thought."

The newly discovered plant belongs to the gentian family, whose members are known for their deep blue flowers. They are found on all continents except Antarctica in a wide variety of habitats and have been valued as herbal remedies since the dawn of recorded history. One particular genus, Macrocarpaea, is found predominantly in the mountainous rain forests of America, and it was these that in 2001 the two scientists sought in Ecuador.

"We drove south through misty mountains and lush vegetation, stopping at many places to examine the flora," said Struwe. "Suddenly we saw strange plants growing by the roadside. They had none of the flowers characteristic of gentians, but they did look like a Macrocarpaea – a kind never before seen."

Struwe explained that in order to confirm that it was a gentian, they needed to find a plant with flowers. As darkness approached, the rain-soaked botanists pursued their quarry and, on the verge of giving up, they found it. "At the very last moment, a tall flowering plant suddenly, almost magically appeared in front on us," she said. "It was a small tree, 12-15 feet tall, full with yellowish-white, bell-shaped flowers adapted to nocturnal pollination by bats and moths," added Grant.

The flowers emerged only as darkness fell, almost as an apparition. Thus, Struwe and Grant settled quickly on the species name, apparata.

Struwe had previously identified a new gentian genus in Brazil – Aripuana – and a dozen new gentian species, while Grant has more than 20 new species of Macrocarpaea to his credit. The research described in the June 27 paper was funded by the New York Botanical Garden, Rutgers University and the Université de Neuchâtel, Switzerland.

Joseph Blumberg | EurekAlert!
Further information:
http://www.rutgers.edu/

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>