Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harry Potter and the Ecuadorian flowers

24.06.2003


A new species of the gentian family gets a Potteresque name



Harry Potter’s influence pervades even the science of plant taxonomy at Rutgers, The State University of New Jersey. Lena Struwe, assistant professor of ecology, evolution and natural resources at Rutgers’ Cook College – and a fan of the fictional young wizard – has shared in the discovery of a rare, new jungle plant that now bears a Potteresque name.

The new species, Macrocarpaea apparata, is described by Struwe and Jason Grant of the Université de Neuchâtel in Switzerland in the June 27 issue of Harvard Papers in Botany [8(1): 61-81, 2003]. The species name, apparata, is drawn from the term "to apparate" – as in apparition – a verb used throughout the book, Harry Potter and the Chamber of Secrets. The author, J.K. Rowling, uses it to refer to a wizard’s ability to disappear and reappear elsewhere instantaneously.


In an effort to conserve the world’s deteriorating biodiversity, plant taxonomists investigate and describe what is known to exist and go out in the field to look for new species. Struwe and Grant have been exploring the shrinking rain forests of South America, most recently the tropical, mountainous Andes region in southern Ecuador.

"Much of the original forest is now gone because trees have gone to lumber and vegetation has been burned to clear pastureland," said Struwe. "In Ecuador alone, a recent estimate is that 83 percent of all plant species are threatened with extinction, a much higher percentage than we previously thought."

The newly discovered plant belongs to the gentian family, whose members are known for their deep blue flowers. They are found on all continents except Antarctica in a wide variety of habitats and have been valued as herbal remedies since the dawn of recorded history. One particular genus, Macrocarpaea, is found predominantly in the mountainous rain forests of America, and it was these that in 2001 the two scientists sought in Ecuador.

"We drove south through misty mountains and lush vegetation, stopping at many places to examine the flora," said Struwe. "Suddenly we saw strange plants growing by the roadside. They had none of the flowers characteristic of gentians, but they did look like a Macrocarpaea – a kind never before seen."

Struwe explained that in order to confirm that it was a gentian, they needed to find a plant with flowers. As darkness approached, the rain-soaked botanists pursued their quarry and, on the verge of giving up, they found it. "At the very last moment, a tall flowering plant suddenly, almost magically appeared in front on us," she said. "It was a small tree, 12-15 feet tall, full with yellowish-white, bell-shaped flowers adapted to nocturnal pollination by bats and moths," added Grant.

The flowers emerged only as darkness fell, almost as an apparition. Thus, Struwe and Grant settled quickly on the species name, apparata.

Struwe had previously identified a new gentian genus in Brazil – Aripuana – and a dozen new gentian species, while Grant has more than 20 new species of Macrocarpaea to his credit. The research described in the June 27 paper was funded by the New York Botanical Garden, Rutgers University and the Université de Neuchâtel, Switzerland.

Joseph Blumberg | EurekAlert!
Further information:
http://www.rutgers.edu/

More articles from Life Sciences:

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

nachricht A blue stoplight to prevent runaway photosynthesis
27.09.2016 | National Institute for Basic Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

 
Latest News

New switch decides between genome repair and death of cells

27.09.2016 | Life Sciences

Nanotechnology for energy materials: Electrodes like leaf veins

27.09.2016 | Physics and Astronomy

‘Missing link’ found in the development of bioelectronic medicines

27.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>