Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Harry Potter and the Ecuadorian flowers

24.06.2003


A new species of the gentian family gets a Potteresque name



Harry Potter’s influence pervades even the science of plant taxonomy at Rutgers, The State University of New Jersey. Lena Struwe, assistant professor of ecology, evolution and natural resources at Rutgers’ Cook College – and a fan of the fictional young wizard – has shared in the discovery of a rare, new jungle plant that now bears a Potteresque name.

The new species, Macrocarpaea apparata, is described by Struwe and Jason Grant of the Université de Neuchâtel in Switzerland in the June 27 issue of Harvard Papers in Botany [8(1): 61-81, 2003]. The species name, apparata, is drawn from the term "to apparate" – as in apparition – a verb used throughout the book, Harry Potter and the Chamber of Secrets. The author, J.K. Rowling, uses it to refer to a wizard’s ability to disappear and reappear elsewhere instantaneously.


In an effort to conserve the world’s deteriorating biodiversity, plant taxonomists investigate and describe what is known to exist and go out in the field to look for new species. Struwe and Grant have been exploring the shrinking rain forests of South America, most recently the tropical, mountainous Andes region in southern Ecuador.

"Much of the original forest is now gone because trees have gone to lumber and vegetation has been burned to clear pastureland," said Struwe. "In Ecuador alone, a recent estimate is that 83 percent of all plant species are threatened with extinction, a much higher percentage than we previously thought."

The newly discovered plant belongs to the gentian family, whose members are known for their deep blue flowers. They are found on all continents except Antarctica in a wide variety of habitats and have been valued as herbal remedies since the dawn of recorded history. One particular genus, Macrocarpaea, is found predominantly in the mountainous rain forests of America, and it was these that in 2001 the two scientists sought in Ecuador.

"We drove south through misty mountains and lush vegetation, stopping at many places to examine the flora," said Struwe. "Suddenly we saw strange plants growing by the roadside. They had none of the flowers characteristic of gentians, but they did look like a Macrocarpaea – a kind never before seen."

Struwe explained that in order to confirm that it was a gentian, they needed to find a plant with flowers. As darkness approached, the rain-soaked botanists pursued their quarry and, on the verge of giving up, they found it. "At the very last moment, a tall flowering plant suddenly, almost magically appeared in front on us," she said. "It was a small tree, 12-15 feet tall, full with yellowish-white, bell-shaped flowers adapted to nocturnal pollination by bats and moths," added Grant.

The flowers emerged only as darkness fell, almost as an apparition. Thus, Struwe and Grant settled quickly on the species name, apparata.

Struwe had previously identified a new gentian genus in Brazil – Aripuana – and a dozen new gentian species, while Grant has more than 20 new species of Macrocarpaea to his credit. The research described in the June 27 paper was funded by the New York Botanical Garden, Rutgers University and the Université de Neuchâtel, Switzerland.

Joseph Blumberg | EurekAlert!
Further information:
http://www.rutgers.edu/

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>