Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers detect receptor for day/night cycles

24.06.2003


It’s been something of a mystery to scientists - how are blind mice able to synchronize their biological rhythms to day and night? New research by a team of scientists, including one from the University of Toronto, seems to have uncovered the answer.

Rods and cones in the outer retina are the eyes’ main photoreceptors, explains Nicholas Mrosovsky, professor emeritus in zoology at U of T. When these rods and cones degenerate, mammals and animals become blind. Despite this, however, some animals can synchronize their biological clocks to the day/night cycle, a problem that has perplexed scientists for the past decade.

"We believed there must be some other specialized receptor for detecting night and day. We now have evidence that this long sought-after photoreceptor is a layer of cells, located in the inner retina, that contain melanopsin, a pigment chemically related to other opsins [a type of protein] found in the rods and cones of the outer retina."



In their study, the researchers deleted melanopsin from the inner retinal cells of transgenic mice. Mrosovsky found that melanopsin-free mice could not synchronize their biological rhythms to day/night cycles or react normally to light stimuli. This research may be applicable to humans who are blind but who have the melanopsin receptor. They may still be able to synchronize their biological rhythms, he says.


Recently published online in Nature, this research was supported by the U.S. National Eye Institute, the U.K. Biotechnology and Biological Sciences Research Council, the Wellcome Trust and the Canadian Institutes of Health Research.

Additional Contact: Professor Emeritus Nicholas Mrosovsky, Department of Zoology, 416-978-8506, mro@zoo.utoronto.ca

Janet Wong | EurekAlert!
Further information:
http://www.utoronto.ca/

More articles from Life Sciences:

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

nachricht Chlamydia: How bacteria take over control
28.03.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>