Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study finds direction of enzymes affects DNA repair

23.06.2003


DNA repair enzymes do a much better job of repairing damaged genes if they are facing in one direction instead of the other. This and other details of how DNA repair is performed are reported in the online version of the journal Proceedings of the National Academy of Sciences by researchers at Washington State University and the National Institute of Environmental Health Sciences.

According to the new study, the repair enzymes "distinguish" between various positions and may be two to three times as effective, depending on whether the damage to be repaired is facing "toward" or "away from" the nucleosome, the protein-DNA complex that folds the very long DNA strands into the tiny nucleus of a cell and gives enzymes access to the DNA for repair and for replication when the cell divides.

Washington State’s senior author, Michael J. Smerdon, explained, "Like a child’s face, our DNA gets smudged up all the time by environmental and bodily chemicals. Our work provides additional details about how our cells work to clean the DNA up - to correct our heredity molecule, the DNA helix that is within each living cell." The explosion of research on DNA repair dates back less than a decade, to the demonstration that some colon cancer and xeroderma pigmentosum are linked to faulty DNA repair. Xeroderma pigmentosum is a rare condition in which the skin is extremely sensitive to the sun and other ultraviolet light, resulting in extreme freckling and aging.



A key element of the report is the finding of a strong "down-regulation" of one of the repair enzymes, DNA polymerase ß (pol ß) in the presence of the nucleosome. This means that nucleosome formation on DNA can inhibit base excision repair of a nucleosome-sequestered DNA lesion. Such down-regulation could have huge biological implications, since repair of such DNA damage will be blocked at the pol ß step. Such a blocking of repair will ultimately lead to mutations or other genomic instability or will interrupt cell growth.

"This changes our thinking about nucleosomes and base excision repair," Samuel Wilson, M.D., Ph.D., deputy director of NIEHS and its researcher on the project, said. "We are still just scratching the surface of the study of cellular regulation, but the potential seems clear. The findings demonstrate how close we are to the day when, if the body fails to make the right regulatory corrections, physicians may be able to step in and make them anyway. In other words, to make corrections before diseases - a cancer or Alzheimer’s, for example - can develop."

Brian C. Beard, Ph.D., of WSU’s School of Molecular Biosciences carried out the study under the guidance of Drs. Smerdon and Wilson.

The double-coil shape of the DNA molecule which manages our heredity and directs our cells was described 50 years ago. Almost immediately, it became clear that toxic agents in the environment and in the body can produce adverse changes in the DNA. Handily, however, these alterations are generally repaired by the body’s mechanisms, much the way "spell check" repairs misspelled words on a computer. Actually, it is much more complicated than that:

In repairing some 10,000 to 20,000 DNA adducts or lesions that occur each day in each of a human’s 10 trillion cells, repair enzymes travel up and down the double helix strands of DNA until they find a damaged area. The enzymes cut out the lesion and fill the gap with fresh DNA.

All this is performed in very tight quarters. Each human cell has a strand of DNA that is almost two meters long. This is tightly coiled in the bead-like nuclerosomes and densely folded in order to fit inside the tiny nucleus of the cell.

Repairs are complicated by this compact packaging, and Dr. Smerdon has shown that repair of damage cannot proceed until the DNA is unfolded.

He said recently that understanding the repair of DNA in specific regions of the packaged structure in the cell nucleus is "crucial to understanding why certain DNA lesions are not repaired for long times in human cells. Such ’long-lived’ lesions can form mutations and ultimately lead to cancer."

In 1978, Dr. Smerdon received a Young Environmental Scientist Award from NIEHS, which has continued to support his research. In 2002, NIEHS awarded Dr. Smerdon a ten-year $3.58 million MERIT - Method to Extend Research in Time - award to further his groundbreaking studies.


###
Dr. Smerdon can be reached at smerdon@mail.wsu.edu or (509) 335-6853
Dr. Wilson can be reached at wilson5@nieh.nih.gov or (919) 541-3267
Dr. Beard can be reached at brianc@mail.wsu.edu

Additional Contact:
Tom Hawkins, (919) 541-1402

Bill Grigg | EurekAlert!
Further information:
http://www.niehs.nih.gov/

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>