Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Low Birthweight Link to Diabetes May Be Due to Decreased Formation of Blood Vessels

20.06.2003


Animal Models Offer Newborn Opportunity to Permanently Rescue Insulin-making Cells and Possibly Even Protect Against Future Onset



A common condition that leads to low birthweight babies may predispose the infants to obesity and diabetes later in life by denying cells in the pancreas access to the chemical signals they need to mature, according to researchers at the University of Pennsylvania School of Medicine. Moreover, the condition, which they have successfully modeled in rodents, may be reversed soon after birth by the administration of hormones that stimulate the maturation of the pancreatic beta cells, which produce insulin. Their findings suggest a way of preventing diabetes in people at-risk for the disease by boosting the creation of beta cells soon after birth.

According to Rebecca A. Simmons, MD, assistant professor in Penn’s Department of Pediatrics, "the condition, called intrauterine growth retardation (IUGR), is generally caused by the inability of a developing fetus to receive adequate nutrition and can effect as many as one in 10 newborns." Diminished fetal growth is due to a number of different processes such as high blood pressure and intrauterine infections. Epidemiological studies have also shown that there is a strong link between IUGR and the development of obesity and diabetes in adulthood. The Penn researchers believe the link may be due to the decreased formation of blood vessels in the pancreas.


"Our findings show that the blood vessels themselves - not just a signal carried in the blood - appear to provide a signal for pancreatic islets to mature normally in the fetus," said Doris A. Stoffers, MD, PhD, assistant professor in Penn’s Division of Endocrinology, Diabetes, and Metabolism. "The defect in the blood vessels may be involved in the later loss of beta cells within islets, which leads to diabetes."

Stoffers, Simmons and colleagues reported their findings in the March 2003 issue of the journal Diabetes, which they and have expanded upon today at a poster session at the annual meeting of the Endocrine Society being held in Philadelphia.

The researchers also found that exendin-4, an analog of a pancreatic hormone, normalizes beta-cells, the cells within the pancreatic islets that produce insulin.

"Soon after birth, there is a normal period in which the endocrine function of the pancreas is still being remodeled through periods of increased cell growth and differentiation, as the newborn’s body is putting the finishing touches on the endocrine system," said Stoffers. "It is a critical period that, in our IUGR rodents, can be dramatically rescued by exendin-4, which prevents the progressive reduction of insulin-producing beta-cells."

In addition to a life-long normalization of sugar tolerance, the researchers observed that the animal models maintained a healthy number of beta-cells as well as a normal body weight. Their studies suggest that exendin-4 stimulates beta cells by influencing PDX, a protein that mediates how the pancreas responds to sugar by triggering the production of insulin. PDX is also thought to have a role in islet regeneration in adults. Therefore, the researchers believe that exendin-4 and related substances show promise in the treatment of diabetes not only because the restorative effects of exendin-4 on beta-cells, but also because of its potential to regulate PDX and thereby expand the amount of beta-cells overall.

"It seems that there is a window of opportunity to prevent the development of human adult-onset diabetes by treating newborns," said Stoffers and Simmons. "If this research translates into humans, then we can envision a way to prevent the development of adult onset diabetes-- by increasing the amount of beta-cells that children will carry with them into adulthood."

Other contributors to this research include Biva M. Desai and Michael Crutchlow of Penn and Diva D. DeLeon, of Penn and The Children’s Hospital Of Philadelphia.

The ongoing research of Drs. Stoffers and Simmons is supported by grants made by the National Institutes of Health, the American Diabetes Association, and the Pennsylvania Diabetes Center.

Contact: Greg Lester, lesterg@uphs.upenn.edu

Greg Lester | EurekAlert!
Further information:
http://www.med.upenn.edu

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>