Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Missing link detected in insulin mechanism

20.06.2003


Protein could provide clues for understanding type two diabetes



Along the multifaceted insulin pathway, Dartmouth Medical School biochemists have found a missing link that may spark the connection for glucose to move into cells. The discovery is another strand in the remarkable web of molecular signals that regulate traffic through cells and helps elucidate crucial aspects of how the hormone insulin regulates a membrane movement process.

The work is being discussed June 21 at the Endocrine Society meeting in Philadelphia by Dr. Gustav Lienhard, professor of biochemistry, who also reported the results in a recent issue of the Journal of Biological Chemistry with colleagues from Dartmouth and Harvard.


Insulin acts to maintain the appropriate level of glucose in the blood. After eating, blood glucose rises, triggering release of insulin from the pancreas to lower the sugar level. One way insulin does that is to accelerate the removal of glucose from blood and into muscle and fat cells. Key aspects of the mechanism for insulin to stimulate this glucose uptake remain to be sorted out.

A conundrum is that muscle and fat cells have proteins known as transporters for ferrying glucose, but these transporters are in the wrong place. Instead of being in the cell’s surface membrane where glucose can climb aboard for passage, they are in vesicles within the cell. So insulin, pressing on a muscle or fat cell, prods these vesicles inside the cell to fuse with the surface membrane, putting the transporters where they can ferry the glucose into the cell. Suddenly the surface membrane has many transporters and glucose can enter the cell rapidly.

Lienhard likens the process to a room with too few doors. "You have a lot of people wanting to get into the room that only has two doors so they would all have to go through these two doors. But inside the room is a stack of doors. People are the glucose molecules and the doors are the transporters; in response to insulin, these doors get shoved into the walls of the room and more people can get into the room quickly."

Lienhard leads a team studying how insulin impinging on the outside of the cell spurs these transporter-containing vesicles to move toward and fuse with the cell surface. It involves linking up two specialized areas of cell biology: cell signaling and membrane trafficking.

Insulin binding to its receptor on the outside of the cell membrane initiates a series of actions. That receptor extends through to the inner surface of the membrane and triggers signaling steps, or a signal transduction pathway, that eventually leads to the vesicle movement and fusion.

The Dartmouth researchers have found a protein that seems to bridge the signaling and membrane movement, a span between the signal transduction pathway and the machinery that controls the fusion of the transporter-containing vesicles with the cell surface.

"That was a missing link in this field. If we’re right, this looks like a key protein that connects signaling to trafficking. At the end of the signal transduction pathway, we found a protein that’s modified by phosphorylation--by putting phosphate groups on it--and this protein also acts on a key protein component in the machinery for vesicle movement and fusion," Lienhard says.

This protein could provide clues for understanding type two diabetes. A hallmark of the illness is insulin resistance: muscle and fat tissues do not respond adequately to insulin. The transporters they need on their cell surface are trapped inside and it takes a higher concentration of insulin to move additional transporters to the cell surface. Lienhard stresses that studies of the protein in diabetic rodent models need to be done.

The findings could also shed light on how hormones regulate movement of membrane proteins in general, Lienhard adds. "The protein has a widespread tissue distribution. It is found in all the major tissues in the body--brain, liver, kidney, so it could function in other systems where a hormone treatment causes the rapid movement of proteins to the cell surface."

The researchers used a cultured fat cell line that originated from mice. Once they found the protein, they were able to identify it by comparing its amino acid sequence to the gene database.

Contact:

Andy Nordhoff
e-mail: dms.communications@dartmouth.edu

Andy Nordhoff | EurekAlert!
Further information:
http://www.dartmouth.edu

More articles from Life Sciences:

nachricht Desert ants cannot be fooled
23.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>