Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Missing link detected in insulin mechanism

20.06.2003


Protein could provide clues for understanding type two diabetes



Along the multifaceted insulin pathway, Dartmouth Medical School biochemists have found a missing link that may spark the connection for glucose to move into cells. The discovery is another strand in the remarkable web of molecular signals that regulate traffic through cells and helps elucidate crucial aspects of how the hormone insulin regulates a membrane movement process.

The work is being discussed June 21 at the Endocrine Society meeting in Philadelphia by Dr. Gustav Lienhard, professor of biochemistry, who also reported the results in a recent issue of the Journal of Biological Chemistry with colleagues from Dartmouth and Harvard.


Insulin acts to maintain the appropriate level of glucose in the blood. After eating, blood glucose rises, triggering release of insulin from the pancreas to lower the sugar level. One way insulin does that is to accelerate the removal of glucose from blood and into muscle and fat cells. Key aspects of the mechanism for insulin to stimulate this glucose uptake remain to be sorted out.

A conundrum is that muscle and fat cells have proteins known as transporters for ferrying glucose, but these transporters are in the wrong place. Instead of being in the cell’s surface membrane where glucose can climb aboard for passage, they are in vesicles within the cell. So insulin, pressing on a muscle or fat cell, prods these vesicles inside the cell to fuse with the surface membrane, putting the transporters where they can ferry the glucose into the cell. Suddenly the surface membrane has many transporters and glucose can enter the cell rapidly.

Lienhard likens the process to a room with too few doors. "You have a lot of people wanting to get into the room that only has two doors so they would all have to go through these two doors. But inside the room is a stack of doors. People are the glucose molecules and the doors are the transporters; in response to insulin, these doors get shoved into the walls of the room and more people can get into the room quickly."

Lienhard leads a team studying how insulin impinging on the outside of the cell spurs these transporter-containing vesicles to move toward and fuse with the cell surface. It involves linking up two specialized areas of cell biology: cell signaling and membrane trafficking.

Insulin binding to its receptor on the outside of the cell membrane initiates a series of actions. That receptor extends through to the inner surface of the membrane and triggers signaling steps, or a signal transduction pathway, that eventually leads to the vesicle movement and fusion.

The Dartmouth researchers have found a protein that seems to bridge the signaling and membrane movement, a span between the signal transduction pathway and the machinery that controls the fusion of the transporter-containing vesicles with the cell surface.

"That was a missing link in this field. If we’re right, this looks like a key protein that connects signaling to trafficking. At the end of the signal transduction pathway, we found a protein that’s modified by phosphorylation--by putting phosphate groups on it--and this protein also acts on a key protein component in the machinery for vesicle movement and fusion," Lienhard says.

This protein could provide clues for understanding type two diabetes. A hallmark of the illness is insulin resistance: muscle and fat tissues do not respond adequately to insulin. The transporters they need on their cell surface are trapped inside and it takes a higher concentration of insulin to move additional transporters to the cell surface. Lienhard stresses that studies of the protein in diabetic rodent models need to be done.

The findings could also shed light on how hormones regulate movement of membrane proteins in general, Lienhard adds. "The protein has a widespread tissue distribution. It is found in all the major tissues in the body--brain, liver, kidney, so it could function in other systems where a hormone treatment causes the rapid movement of proteins to the cell surface."

The researchers used a cultured fat cell line that originated from mice. Once they found the protein, they were able to identify it by comparing its amino acid sequence to the gene database.

Contact:

Andy Nordhoff
e-mail: dms.communications@dartmouth.edu

Andy Nordhoff | EurekAlert!
Further information:
http://www.dartmouth.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>