Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Missing link detected in insulin mechanism

20.06.2003


Protein could provide clues for understanding type two diabetes



Along the multifaceted insulin pathway, Dartmouth Medical School biochemists have found a missing link that may spark the connection for glucose to move into cells. The discovery is another strand in the remarkable web of molecular signals that regulate traffic through cells and helps elucidate crucial aspects of how the hormone insulin regulates a membrane movement process.

The work is being discussed June 21 at the Endocrine Society meeting in Philadelphia by Dr. Gustav Lienhard, professor of biochemistry, who also reported the results in a recent issue of the Journal of Biological Chemistry with colleagues from Dartmouth and Harvard.


Insulin acts to maintain the appropriate level of glucose in the blood. After eating, blood glucose rises, triggering release of insulin from the pancreas to lower the sugar level. One way insulin does that is to accelerate the removal of glucose from blood and into muscle and fat cells. Key aspects of the mechanism for insulin to stimulate this glucose uptake remain to be sorted out.

A conundrum is that muscle and fat cells have proteins known as transporters for ferrying glucose, but these transporters are in the wrong place. Instead of being in the cell’s surface membrane where glucose can climb aboard for passage, they are in vesicles within the cell. So insulin, pressing on a muscle or fat cell, prods these vesicles inside the cell to fuse with the surface membrane, putting the transporters where they can ferry the glucose into the cell. Suddenly the surface membrane has many transporters and glucose can enter the cell rapidly.

Lienhard likens the process to a room with too few doors. "You have a lot of people wanting to get into the room that only has two doors so they would all have to go through these two doors. But inside the room is a stack of doors. People are the glucose molecules and the doors are the transporters; in response to insulin, these doors get shoved into the walls of the room and more people can get into the room quickly."

Lienhard leads a team studying how insulin impinging on the outside of the cell spurs these transporter-containing vesicles to move toward and fuse with the cell surface. It involves linking up two specialized areas of cell biology: cell signaling and membrane trafficking.

Insulin binding to its receptor on the outside of the cell membrane initiates a series of actions. That receptor extends through to the inner surface of the membrane and triggers signaling steps, or a signal transduction pathway, that eventually leads to the vesicle movement and fusion.

The Dartmouth researchers have found a protein that seems to bridge the signaling and membrane movement, a span between the signal transduction pathway and the machinery that controls the fusion of the transporter-containing vesicles with the cell surface.

"That was a missing link in this field. If we’re right, this looks like a key protein that connects signaling to trafficking. At the end of the signal transduction pathway, we found a protein that’s modified by phosphorylation--by putting phosphate groups on it--and this protein also acts on a key protein component in the machinery for vesicle movement and fusion," Lienhard says.

This protein could provide clues for understanding type two diabetes. A hallmark of the illness is insulin resistance: muscle and fat tissues do not respond adequately to insulin. The transporters they need on their cell surface are trapped inside and it takes a higher concentration of insulin to move additional transporters to the cell surface. Lienhard stresses that studies of the protein in diabetic rodent models need to be done.

The findings could also shed light on how hormones regulate movement of membrane proteins in general, Lienhard adds. "The protein has a widespread tissue distribution. It is found in all the major tissues in the body--brain, liver, kidney, so it could function in other systems where a hormone treatment causes the rapid movement of proteins to the cell surface."

The researchers used a cultured fat cell line that originated from mice. Once they found the protein, they were able to identify it by comparing its amino acid sequence to the gene database.

Contact:

Andy Nordhoff
e-mail: dms.communications@dartmouth.edu

Andy Nordhoff | EurekAlert!
Further information:
http://www.dartmouth.edu

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Gecko adhesion technology moves closer to industrial uses

13.12.2017 | Information Technology

Columbia engineers create artificial graphene in a nanofabricated semiconductor structure

13.12.2017 | Physics and Astronomy

Research reveals how diabetes in pregnancy affects baby's heart

13.12.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>