Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Missing link detected in insulin mechanism

20.06.2003


Protein could provide clues for understanding type two diabetes



Along the multifaceted insulin pathway, Dartmouth Medical School biochemists have found a missing link that may spark the connection for glucose to move into cells. The discovery is another strand in the remarkable web of molecular signals that regulate traffic through cells and helps elucidate crucial aspects of how the hormone insulin regulates a membrane movement process.

The work is being discussed June 21 at the Endocrine Society meeting in Philadelphia by Dr. Gustav Lienhard, professor of biochemistry, who also reported the results in a recent issue of the Journal of Biological Chemistry with colleagues from Dartmouth and Harvard.


Insulin acts to maintain the appropriate level of glucose in the blood. After eating, blood glucose rises, triggering release of insulin from the pancreas to lower the sugar level. One way insulin does that is to accelerate the removal of glucose from blood and into muscle and fat cells. Key aspects of the mechanism for insulin to stimulate this glucose uptake remain to be sorted out.

A conundrum is that muscle and fat cells have proteins known as transporters for ferrying glucose, but these transporters are in the wrong place. Instead of being in the cell’s surface membrane where glucose can climb aboard for passage, they are in vesicles within the cell. So insulin, pressing on a muscle or fat cell, prods these vesicles inside the cell to fuse with the surface membrane, putting the transporters where they can ferry the glucose into the cell. Suddenly the surface membrane has many transporters and glucose can enter the cell rapidly.

Lienhard likens the process to a room with too few doors. "You have a lot of people wanting to get into the room that only has two doors so they would all have to go through these two doors. But inside the room is a stack of doors. People are the glucose molecules and the doors are the transporters; in response to insulin, these doors get shoved into the walls of the room and more people can get into the room quickly."

Lienhard leads a team studying how insulin impinging on the outside of the cell spurs these transporter-containing vesicles to move toward and fuse with the cell surface. It involves linking up two specialized areas of cell biology: cell signaling and membrane trafficking.

Insulin binding to its receptor on the outside of the cell membrane initiates a series of actions. That receptor extends through to the inner surface of the membrane and triggers signaling steps, or a signal transduction pathway, that eventually leads to the vesicle movement and fusion.

The Dartmouth researchers have found a protein that seems to bridge the signaling and membrane movement, a span between the signal transduction pathway and the machinery that controls the fusion of the transporter-containing vesicles with the cell surface.

"That was a missing link in this field. If we’re right, this looks like a key protein that connects signaling to trafficking. At the end of the signal transduction pathway, we found a protein that’s modified by phosphorylation--by putting phosphate groups on it--and this protein also acts on a key protein component in the machinery for vesicle movement and fusion," Lienhard says.

This protein could provide clues for understanding type two diabetes. A hallmark of the illness is insulin resistance: muscle and fat tissues do not respond adequately to insulin. The transporters they need on their cell surface are trapped inside and it takes a higher concentration of insulin to move additional transporters to the cell surface. Lienhard stresses that studies of the protein in diabetic rodent models need to be done.

The findings could also shed light on how hormones regulate movement of membrane proteins in general, Lienhard adds. "The protein has a widespread tissue distribution. It is found in all the major tissues in the body--brain, liver, kidney, so it could function in other systems where a hormone treatment causes the rapid movement of proteins to the cell surface."

The researchers used a cultured fat cell line that originated from mice. Once they found the protein, they were able to identify it by comparing its amino acid sequence to the gene database.

Contact:

Andy Nordhoff
e-mail: dms.communications@dartmouth.edu

Andy Nordhoff | EurekAlert!
Further information:
http://www.dartmouth.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>