Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Organelle’s discovery challenges theory, could alter approach to disease treatment

18.06.2003


Researchers looking inside a pathogenic soil bacterium have found an organelle, a subcellular pouch, existing independently from the plasma membrane. The discovery within a prokaryotic organism challenges the theory on the origin of eukaryotic organelles and suggests a targeted approach to killing many disease-causing organisms.


Acidocalcisomes (the black spheres) as viewed in a trypanosome, a family of parasites that cause African sleeping sickness, Chagas disease and leishmaniasis and the first organisms where Docampo found this organelle. The cell is approximately 10 microns long and 4 microns wide. Courtesy of Kildare Miranda



"The organelle we found in the bacterium Agrobacterium tumefaciens is practically identical to the organelle called acidocalcisome in unicellular eukaryotes," said Roberto Docampo, a professor of veterinary pathobiology in the College of Veterinary Medicine at the University of Illinois at Urbana-Champaign.

Docampo began researching these organelles in 1994. He soon determined that a tiny granule in yeast, fungi and bacteria, thought to be for storage, was a fully operational organelle containing pyrophosphatase, a pump-like enzyme that allows proton transport. He named it an acidocalcisome for its acidic and calcium components. In 2000, he reported its existence in Plasmodium berghei, a malaria-causing eukaryotic parasite.


The newest discovery appeared in a paper published online this month by the Journal of Biological Chemistry. The paper, by Docampo and colleagues at the Center for Zoonoses Research and Laboratory of Molecular Parasitology at Illinois, will be published in a later print edition of the journal.

Agrobacterium tumefaciens is a prokaryote, a unicellular organism lacking membrane-bound nuclei. It causes crown gall disease in many broad-leaved plants but also is a favored tool for plant breeding because of its model system of DNA transfer into the hosts it invades. Samples were provided to Docampo’s team by biotechnology researcher Stephen K. Farrand, a professor of microbiology and crop sciences at Illinois.

Bacteria and other prokaryotes generally lack an endomembrane system.

Thus bacteria are presumed to lack compartments such as organelles not somehow linked to the plasma membrane ringing the organisms.

"What we describe is a discrete organelle independent of the plasma membrane," Docampo said. "It has a proton pump in its membrane, which is used to maintain its interior acidic content. This has never been described before in a bacterium."

The existence of discrete organelles is a defining component of unicellular eukaryotes, which have membrane-bound nuclei and specialized structures in their cell boundaries. The evolution of eukaryotic organelles "is a matter of extensive debate," Docampo said. The principle of endosymbiosis says that as microorganisms engulfed others, then new, membrane-surrounded organelles emerged in eukaryotes.

"It appears that this organelle has been conserved in evolution from prokaryotes to eukaryotes, since it is present in both. This argues against the belief that all eukaryotic organelles were formed when early eukaryotes swallowed prokaryotes," he said.

Using transmission electron and immunoelectron microscopy and X-ray microanalysis on the bacterium, researchers got a highly magnified and illuminated view.

They applied a fluorescent dye into the suspected organelle. They saw a membrane around it. The dye stained areas only within it, not in the cytosol. Serum containing antibodies to peptides related to pyrophosphatase unveiled this pump-like enzyme, and other staining techniques revealed high levels of polyphosphate only in the organelle.

Many parasites such as those that cause malaria, African sleeping sickness and toxoplasmosis and bacteria that contain these acidocalcisome organelles are pathogens.

Some pharmaceutical approaches have targeted pyrophosphate-related enzymes, Docampo said. "Our suggestion is that if drugs specifically targeted these organelles, you may be able to kill the entire organisms."

In addition to Docampo, other Illinois researchers were Manfredo Seufferheld, Mauricio C.F. Vieira, Felix A. Ruiz, Claudia O. Rodrigues and Silvia N.J. Moreno. The National Institutes of Health funded the research through a grant to Docampo.

Jim Barlow | UIUC
Further information:
http://www.news.uiuc.edu/scitips/03/0617organelle.html

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>