Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Organelle’s discovery challenges theory, could alter approach to disease treatment

18.06.2003


Researchers looking inside a pathogenic soil bacterium have found an organelle, a subcellular pouch, existing independently from the plasma membrane. The discovery within a prokaryotic organism challenges the theory on the origin of eukaryotic organelles and suggests a targeted approach to killing many disease-causing organisms.


Acidocalcisomes (the black spheres) as viewed in a trypanosome, a family of parasites that cause African sleeping sickness, Chagas disease and leishmaniasis and the first organisms where Docampo found this organelle. The cell is approximately 10 microns long and 4 microns wide. Courtesy of Kildare Miranda



"The organelle we found in the bacterium Agrobacterium tumefaciens is practically identical to the organelle called acidocalcisome in unicellular eukaryotes," said Roberto Docampo, a professor of veterinary pathobiology in the College of Veterinary Medicine at the University of Illinois at Urbana-Champaign.

Docampo began researching these organelles in 1994. He soon determined that a tiny granule in yeast, fungi and bacteria, thought to be for storage, was a fully operational organelle containing pyrophosphatase, a pump-like enzyme that allows proton transport. He named it an acidocalcisome for its acidic and calcium components. In 2000, he reported its existence in Plasmodium berghei, a malaria-causing eukaryotic parasite.


The newest discovery appeared in a paper published online this month by the Journal of Biological Chemistry. The paper, by Docampo and colleagues at the Center for Zoonoses Research and Laboratory of Molecular Parasitology at Illinois, will be published in a later print edition of the journal.

Agrobacterium tumefaciens is a prokaryote, a unicellular organism lacking membrane-bound nuclei. It causes crown gall disease in many broad-leaved plants but also is a favored tool for plant breeding because of its model system of DNA transfer into the hosts it invades. Samples were provided to Docampo’s team by biotechnology researcher Stephen K. Farrand, a professor of microbiology and crop sciences at Illinois.

Bacteria and other prokaryotes generally lack an endomembrane system.

Thus bacteria are presumed to lack compartments such as organelles not somehow linked to the plasma membrane ringing the organisms.

"What we describe is a discrete organelle independent of the plasma membrane," Docampo said. "It has a proton pump in its membrane, which is used to maintain its interior acidic content. This has never been described before in a bacterium."

The existence of discrete organelles is a defining component of unicellular eukaryotes, which have membrane-bound nuclei and specialized structures in their cell boundaries. The evolution of eukaryotic organelles "is a matter of extensive debate," Docampo said. The principle of endosymbiosis says that as microorganisms engulfed others, then new, membrane-surrounded organelles emerged in eukaryotes.

"It appears that this organelle has been conserved in evolution from prokaryotes to eukaryotes, since it is present in both. This argues against the belief that all eukaryotic organelles were formed when early eukaryotes swallowed prokaryotes," he said.

Using transmission electron and immunoelectron microscopy and X-ray microanalysis on the bacterium, researchers got a highly magnified and illuminated view.

They applied a fluorescent dye into the suspected organelle. They saw a membrane around it. The dye stained areas only within it, not in the cytosol. Serum containing antibodies to peptides related to pyrophosphatase unveiled this pump-like enzyme, and other staining techniques revealed high levels of polyphosphate only in the organelle.

Many parasites such as those that cause malaria, African sleeping sickness and toxoplasmosis and bacteria that contain these acidocalcisome organelles are pathogens.

Some pharmaceutical approaches have targeted pyrophosphate-related enzymes, Docampo said. "Our suggestion is that if drugs specifically targeted these organelles, you may be able to kill the entire organisms."

In addition to Docampo, other Illinois researchers were Manfredo Seufferheld, Mauricio C.F. Vieira, Felix A. Ruiz, Claudia O. Rodrigues and Silvia N.J. Moreno. The National Institutes of Health funded the research through a grant to Docampo.

Jim Barlow | UIUC
Further information:
http://www.news.uiuc.edu/scitips/03/0617organelle.html

More articles from Life Sciences:

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Researchers release the brakes on the immune system

18.10.2017 | Health and Medicine

Separating methane and CO2 will become more efficient

18.10.2017 | Life Sciences

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>