Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Birds do it. Bugs do it. But why don’t we?

17.06.2003


Many creatures including our fellow primates the New World Monkeys rely on highly specific scent molecules called pheromones to find a suitable mate. Even our humble mammal cousin, the mouse, was found to have 140 genes just for pheromone receptors when its genome was completely sequenced earlier this year.



But humans are clueless when it comes to pheromone signals, according to University of Michigan evolutionary biologist Jianzhi "George" Zhang. He believes color vision put our pheromones out of business.

Our closest relatives on the primate family tree rely on "sexual swelling" and gaudy, colorful patches of skin to signal their reproductive fitness and fertility, Zhang said. In fact, though humans and these apes still carry genes that should create pheromone receptors in our noses, these genes have mutated to the point that they are merely pseudogenes---they don’t function any more.


Zhang has used the genes of people and primates to get at the answer to this intriguing puzzle. Zhang (pronounced Zong), is an assistant professor in Ecology and Evolutionary Biology in the College of Literature, Science and Arts. Zhang’s paper on the topic appears this week in the online Proceedings of the National Academy of Sciences.

Zhang believes that a significant gene duplication made the difference and that it happened sometime between 23 million years ago and the split of the New World and Old World primates about 35 million years ago.

An ancestor of the Old World primates (humans, chimps, gorillas, orangutans, gibbons, baboons and guerezas) developed a second copy of the red/green color-vision gene, which resides on the X chromosome. Female New World monkeys have full color vision because females have two X chromosomes that harbor both red and green color vision genes. But males only have one X chromosome, so New World males have only one copy of either the red or green gene, and that leaves them color-blind. After the red/green gene duplication in the Old World family however, even the males got color vision too.

"Color vision made pheromones unnecessary," Zhang said. As a channel for sexual signaling, color vision works better at a distance than pheromones, Zhang believes. A pheromone attaches to a water molecule, drifts about in the air currents and finally lands on the proper receptor in someone else’s nose. The receiver can’t immediately be sure who sent it, where it came from or when. But with sexual swelling, everyone in the troop can see precisely when and where the signal is, even at a significant distance.

Sexual swelling occurs in about 10 percent of all primate species, but only in the Old World species of Africa and Asia, which is where humans probably originated, as well.

To test their idea, Zhang’s team zeroed in on a human gene called TRP2, which makes an ion channel that is unique to the pheromone signaling pathway. They found that in humans and Old World primates, this gene suffered a mutation just over 23 million years ago that rendered it dysfunctional. But because we could use color vision for mating, it didn’t hurt us. In turn, the pheromone receptor genes that rely on this ion channel fell into disuse, and in a random fashion, mutated to a dysfunctional state because they haven’t experienced any pressure from natural selection. Zhang calls this process "evolutionary deterioration."

Zhang’s paper, "Evolutionary deterioration of the vomeronasal pheromone transduction pathway in catarrrhine primates" appears in the Proceedings of the National Academy of Sciences online (http://www.pnas.org/cgi/doi/10.1073/pnas.1331721100)

Karl Leif Bates | EurekAlert!
Further information:
http://www.eeb.lsa.umich.edu/eebfacultydetails.asp?ID=96
http://www.hhmi.org/senses/d230.html
http://www.pnas.org/cgi/doi/10.1073/pnas.1331721100

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>