Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Natural selection’s fingerprint identified on fruit fly evolution

13.06.2003


Researchers at the University of Rochester have produced compelling evidence of how the hand of natural selection caused one species of fruit fly to split into two more than 2 million years ago. The study, appearing in today’s issue of Nature, answers one of evolutionary biologists’ most basic questions--how do species divide--by looking at the very DNA responsible for the division. Understanding why certain genes evolve the way they do during speciation can shed light on some of the least understood aspects of evolution.



"The study of speciation has a reputation for wild speculation because every time we find a curious genetic element, we suspect it of causing speciation," says Daven Presgraves, lead author on the study and postdoctoral fellow at the University. "We know embarrassingly little about a core process in evolutionary biology, but now we’ve nailed down the exact sequence of a gene that we know was involved in keeping two species separated. We can see that it was natural selection that made the gene the way it is."

The study breaks ground in two ways: First, it’s the first time that a gene known to be involved in speciation has had its DNA fully revealed.


Presgraves and colleagues found 20 regions that differed on the chromosomes of two species of fruit flies that were estimated to have diverged in evolution 2.5 million years ago--fairly recently in evolutionary terms. He then needed to find a gene in one of those regions that was responsible for preventing successful reproduction between the two species. If the species could reproduce, then they could swap genes back and forth and thus would not be truly separate species. Something would have to prevent the transfer of genes, and in the case of Presgraves’ fruit flies, that something was the proclivity for hybrid larvae to die before maturing into adults.

He found his gene, called Nup 96, that always prevented a hybrid of the two species from living to reproduce, and he sequenced its DNA.

"We’re seeing a gene responsible for speciation at the maximum possible resolution," says Presgraves. "It’s as if we had a map and could once zoom in on a city, but now we’ve zoomed in on the exact address."

Nup 96 turned out to code for a certain kind of protein that was part of an essential pore in the nucleus of every cell in the fly. If one member of one species of fly mated with a member of the other, this pore would not properly form and the hybrid fly would die. Even though this was an unprecedented finding in itself, it posed a new question that came wholly unexpectedly: Nuclear pores are found in every cell in the world that has a nucleus, so it was labeled as "highly conserved," meaning it was always assumed that it was so important to the survival of an organism that evolution would never tamper with it. Further study will be needed to understand why altering this pore was seen as useful in the evolution of this particular species of fruit fly.

The second groundbreaking result of the study is that Presgraves looked at the DNA of Nup 96 and worked to determine whether these two species simply drifted apart, or whether evolution forcefully took them down their separate paths.

Natural selection, Darwin’s hypothesized tool to explain the development of complexity in species, appeared to have been responsible in moving the species further apart, Presgraves found. He used statistical means to compare the amount of genetic divergence in Nup 96 that existed between the two species to the amount of divergence among individual members of the same species. Members of one species, which readily exchange genes, would indicate what the normal generation-to-generation rate of random genetic mutation would be. The difference between species, however, would show if any of the new randomly acquired traits were useful enough to be "selected for," and passed on to successive generations. While natural selection appeared to evidently play a major role in the development of Nup 96, Presgraves plans to investigate the other 20 or so genes that keep the two species separate, in order to have a full genetic picture of the species’ divergence.


Additional authors of the study are Lakshmi Balagopalan and Susan M. Abmayr of Pennsylvania State University, and H. Allen Orr of the University of Rochester. The research was funded by the National Institutes of Health and the National Science Foundation.

Jonathan Sherwood | EurekAlert!
Further information:
http://www.rochester.edu/

More articles from Life Sciences:

nachricht New mechanisms uncovered explaining frost tolerance in plants
26.09.2016 | Technische Universität München

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>