Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain cells seen recycling rapidly to speed communications

12.06.2003


The tiny spheres inside brain cells that ferry chemical messengers into the synapse make their rounds much more expeditiously than once assumed, National Institute of Mental Health (NIMH) - funded researchers have discovered. They used a dye to track the behavior of such synaptic vesicles in real time, in rat brain cells. Rather than fusing completely with the cell membrane and disgorging their dye contents all at once, brain vesicles more often remained intact, secreting only part of the tracer cargo in each of several repeated, fleeting contacts with the membrane, report Richard Tsien, D.Phil., Stanford University, and colleagues Alex Aravanis and Jason Pyle, in the June 5, 2003 Nature. Dubbed "kiss-and-run" recycling, this allows for more efficient communication between brain cells, suggest the researchers.

Brain cells communicate in a process that begins with an electrical signal and ends with a neurotransmitter binding to a receptor on the receiving neuron. It lasts less than a thousandth of a second, and is repeated billions of times daily in each of the human brain’s 100 billion neurons. Much of the action is happening inside the secreting cell. There, electrical impulses propel vesicles into the cell wall to spray the neurotransmitter into the synapse. Likened to soap bubbles merging, or bubbles bursting at the surface of boiling water, this process of membrane fusion (*RealPlayer format) may hold clues about what goes wrong in disorders of thinking, learning and memory, including schizophrenia and other mental illnesses thought to involve disturbances in neuronal communication.

Neurons must recycle a finite number of vesicles. In "classical" membrane fusion, the vesicle totally collapses and mixes with the cell membrane, requiring a complex and time-consuming and retrieval and recycling process. Yet, Tsien and colleagues point out that this process was discovered in huge neurons, such as those in squid giant synapses, with tens or hundreds of thousands of vesicles per nerve terminal. By contrast, they find that the comparatively tiny nerve terminals of the mammalian brain must make do with only about 30 functional vesicles – hardly enough to keep up with the split-second demands of synaptic communication if vesicles can only be replenished via the, one-shot classical process, they argue. Hence, the "kiss-and-run" hypothesis.



To observe single vesicles in action, Tsien and colleagues put a fluorescent dye into nerve terminals in cultured neurons from the rat hippocampus, a key memory hub involved in learning. The dye was later washed out of neuronal membranes, but it remained trapped in the vesicles, enabling the researchers to take snapshots of their activity at synapses following electrical stimulation, using a microscope, pulses of fluorescent light, and a CCD imaging device.

When they tracked single vesicles following stimulation, they usually observed a series of abrupt and lasting -- albeit partial -- decreases in fluorescence, indicating multiple fusion events. Yet, only rarely was there a full loss of fluorescence, indicating full classical collapse.

"A likely explanation is that most fusion events were simply too brief to permit dye to escape completely," noted Tsien and colleagues. "After rapid retrieval by a process that maintained vesicle integrity, vesicles remained available for repeated fusion, supporting their repeated re-use for neurotransmitter release. Vesicles are readily refilled with neurotransmitter so each fusion can send a meaningful signal. Together, brief fusion, rapid retrieval and re-use would enable small nerve terminals of the central nervous system to get full mileage from their limited set of vesicles."

Only at times of "all-out vesicular mobilization" would most of the hippocampal neuron vesicles likely shift to the classical mode of membrane fusion, they concluded.

Another study published in the same issue of Nature by Dr. Charles Stevens, The Salk Institute, and colleagues, also found evidence in support of "kiss-and-run."


NIMH is part of the National Institutes of Health (NIH), the Federal Government’s primary agency for biomedical and behavioral research. NIH is a component of the U.S. Department of Health and Human Services.

Video Archive: "Calcium Channels and Local and Long Distance Signaling on Both Sides of the Synapse," Richard Tsien, D.Phil., Stanford University, NIH Neuroscience Seminar Series, Dec. 10, 2001. http://www.nimh.nih.gov/videos/tsien.cfm.




Jules Asher | EurekAlert!
Further information:
http://www.nimh.nih.gov/videos/tsien.cfm
http://www.nimh.nih.gov/

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>