Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Birth of a neuron: Imaging technique tracks nervous systemgrowth and repair, Cornell-Harvard group reports

12.06.2003


A biomedical-imaging technique that would highlight the cytoskeletal infrastructure of nerve cells and map the nervous system as it develops and struggles to repair itself has been proposed by biophysics researchers at Cornell and Harvard universities.

Reporting in Proceedings of the National Academy of Sciences (PNAS June 10, 2003) , the researchers say that besides the new imaging technique’s obvious applications in studying the dynamics of nervous system development, it could answer the puzzle about which errant pathways initiate damage to brain cells, a key question about the onset of Alzheimer’s disease.

The PNAS report, "Uniform polarity microtubule assemblies imaged in native brain tissue by second harmonic generation microscopy," is the work of Watt W. Webb, professor of applied physics at Cornell and leader of the research program. His laboratory collaborators in the School of Applied and Engineering Physics are graduate students Daniel A. Dombeck and Harshad D. Vishwasrao and research associate Karl A. Kasischke, M.D. Martin Ingelsson and Bradley T. Hyman of Massachusetts General Hospital, the largest teaching hospital of Harvard Medical School, also are collaborators.



In developing nerve cells, microtubules are the pioneering extensions from the cell body that grow to form two kinds of processes: the dendrites (branches that collect and conduct impulses inward to the cell body) and the axon (the single, longer process that conducts impulses away from the neuron cell body). Microtubules, made of tiny polymers, are a major part of the cellular cytoskeleton and are responsible for mechanical support. The proposed imaging procedure capitalizes on a structural polarity that exists in the polymers, making the characteristics at one end different from the other.

The researchers predict that their system to image microtubule polarity deep within living brain tissue could expedite the study of neuronal development and repair, the dynamics of migrating cells and neurodegenerative disease.

"Never before has there been a satisfactory way of detecting polarity in microtubule assemblies in living brain tissue," says Webb. "Now we can follow the development of microtubules in vivo to see how architectural changes are occurring in nerve cells or in any other living cells where microtubules are found."

Dombeck says that changes in microtubule polarity are the key to how neurons grow and find their orientation in the developing brain. The cellular processes are depicted in brilliant detail by the new imaging technique, he notes, because of a quantum physical optics phenomenon called second harmonic generation.

"In sound waves, we can hear the second harmonic of a vibrating guitar string when the guitar body resonates and produces a tone twice as high in pitch as the original tone. The same thing happens with light waves -- although no one knew it until lasers were invented -- when a laser beam hits certain kinds of materials in our bodies," says Dombeck. "Sometimes a second harmonic is generated at exactly twice the energy, or half the wavelength, of the original light. Microtubules with uniform polarity generate a second harmonic, but microtubules with mixed polarity don’t. We get destructive interference instead, so that axons light up, and dendrites and everything else with nonuniform polarity in the microtubules stay dark."

To demonstrate the imaging system, the biophysicists depicted axon bundles and individual axons in rat hippocampal brain tissue as well as axons growing from cell bodies in culture dishes. Other demonstrations in non-neuronal structures showed microtubules in the mitotic spindles of dividing cells, and microtubule-based cilia that line the inner walls of the aquaductus cerebri and waggle to propel fluid through the brainstem. When individual, successive images are assembled into a video, cell division can be followed and the fluid-propelling motion of brainstem duct cilia can be studied in detail.

At the most fundamental level, imaging studies might explain the role of microtubule-polarity in developing brain tissue, helping to decipher how the brain becomes "wired." The technique may even reveal changes in microtubule polarity, showing where, when and why neurofilamentary tangles of axons form with precipitates of tau protein in the brains of Alzheimer’s patients, giving the new technique clinical significance, Webb says.

Funding support for the microtubule polarity studies came from the National Science Foundation, National Institutes of Health, Hellmuth Hertz Foundation, Wenner-Gran Foundation and the Alzheimer’s Association.

David Brand | Cornell News
Further information:
http://www.news.cornell.edu/releases/June03/microtubule.hrs.html
http://www.drbio.cornell.edu/drbio.html
http://www.aep.cornell.edu/eng10_page.cfm

More articles from Life Sciences:

nachricht Nesting aids make agricultural fields attractive for bees
20.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht The Kitchen Sponge – Breeding Ground for Germs
20.07.2017 | Hochschule Furtwangen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>