Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University Health Network researchers discover new class of human stem cells

10.06.2003


Cells show promise for cancer and transplant patients because of rapid growth in bone marrow



Scientists with University Health Network have discovered a new class of human stem cells that rapidly grow when implanted in the bone marrow of mice. The findings, available today in an advance on-line publication of the international scientific journal Nature Medicine, are a major advancement in human stem cell research with possible significant clinical implications for designing more effective cancer therapies.

“This is an exciting discovery because for the first time we have found human stem cells that rapidly rebuild a blood system,” said Dr. John Dick, lead author of the study, senior scientist with UHN, and a professor in the University of Toronto’s Department of Molecular and Medical Genetics. “The potential is that it may allow transplant patients to quickly regain their blood cells, which are critical to their immune system.”


The scientists identified the new stem cells after injecting a batch of stem cells directly into the bone of mice, instead of the traditional method of intravenous injection into the blood stream. They observed this new subpopulation of stem cells rapidly repopulate the blood-producing system of the mice, produced high levels of blood cells within the first week or two after transplant, which is one- to two-weeks earlier than the normal rate. This discovery builds on the Dr. Dick’s pioneering method of studying human stem cells by transplanting them into immunodeficient mice which will not reject the human cells.

The discovery could have far reaching implications for cancer and transplant patients whose immune systems are weakened by their treatment. These patients are very vulnerable to infections, usually for as long as three weeks after the treatment, until their blood system recovers enough to fight off infections.

“If these new human stem cells rebuild the blood system of a person as they have in the mice in this study, it may significantly reduce the time a patient is at risk,” said Dr. Armand Keating, Chief of Medical Oncology at Princess Margaret Hospital.

Further study is needed to see if the new stem cells can be separated in larger batches and to refine the method of delivery. “Implanting stem cells directly into bone is a more complex and difficult procedure than the traditional intravenous method,” said Dr. Dick.

The research was supported by grants from the Association pour la Recherche contre le Cancer, the Stem Cell Network, one of Canada’s Networks of Centres of Excellence, the Canadian Cancer Society, the Canadian Genetic Diseases Network, and the Canadian Institutes of Health Research.

University Health Network is a major landmark in Canada’s healthcare system, and a teaching hospital of the University of Toronto. Building on the strengths and reputation of each of our three hospitals, Toronto General Hospital, Toronto Western Hospital and Princess Margaret Hospital, UHN brings together the talent and resources needed to achieve global impact and provide exemplary patient care, research and education.

For more information, please contact :
Vince Rice, Communications Specialist, Public Affairs,
University Health Network 416.946.4501 ext 5771

Vince Rice | University of Toronto
Further information:
http://www.utoronto.ca/

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>