Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neural stem cells take a step closer to the clinic

10.06.2003


Scientists working with cells that may someday be used to replace diseased or damaged cells in the brain have taken neural stem cell technology a key step closer to the clinic.

Writing in the current online edition (June 2003) of the Journal of Neurochemistry, scientists from the University of Wisconsin-Madison’s Waisman Center describe the first molecular profile for human fetal neural stem cell lines that have been coaxed to thrive in culture for more than a year.

The work is an in-depth analysis of global gene expression in human neural stem cells and demonstrates a method for prolonging the shelf life of cultured fetal stem cells, making it possible to generate enough cells to use to treat disease, says Lynda Wright, the lead author of the paper.



"We have now characterized long-term neural stem cells lines," she says. "That genetic characterization - and our ability to grow these lines for a year or more - is one of the major steps toward clinical application."

Unlike human embryonic stem cells, stem cells derived from fetal tissue are not capable of growing in culture indefinitely. But because neural fetal stem cells have been available to science for a much longer period than cells derived from embryos, their capabilities are better known to scientists and they may reach the clinic as therapies for disorders like Parkinson’s and amyotrophic lateral sclerosis (ALS) much sooner.

In culture, the cells can be coaxed into becoming "neurospheres," aggregates of precursor brain cells that, when implanted, can migrate to different parts of the brain, integrate themselves and develop into many of the different types of specialized cells that make up the brain.

"These cells are the basis for future therapies. These are the cells we want to transplant," said Clive Svendsen, senior author of the Journal of Neurochemistry paper and a leading authority on neural stem cells.

But scientists have been limited by the tendency of these cells to peter out in culture, making it difficult to generate quantities that could be used therapeutically. The Wisconsin team reported work on three cell lines that were kept growing and dividing in culture for 50 weeks.

The Wisconsin researchers were able to extend the shelf life of the neural stem cell lines by adding a signaling chemical known as leukemia inhibitory factor to the medium in which the cells were grown.

The cells were then subjected to "gene chip" analysis, a powerful method for scanning the activity of thousands of genes at once. Nearly 33,000 genes were monitored across the three cell lines to chart genetic activity. Knowing what genes are at work is critical for characterizing and preparing cells for use in transplant therapy.

"This is the first real genetic analysis of neural stem cells," says Svendsen. "It is like creating a library and a bank at the same time."

By tuning in to the genes that are at work in the neurospheres, scientists will be able to gain the molecular insight necessary to create cells that can be customized for therapy. For example, the Wisconsin group was able to monitor the activity of genes that influence immune response.

A critical hurdle for any cells or tissue used in transplants is finding ways to get around the body’s immune system, which targets foreign cells and tissue for rejection. Through genetic manipulation, it may be possible to create cells that fool the immune system, obviating the need for drugs to suppress the immune system in order for the transplant to be accepted by the body.

"We saw a huge number of MHC (major histocompatibility complex) genes that were affected," Svendsen says. "This is how cell surfaces are influenced so that the immune system can recognize them."

Svendsen emphasizes that while the new work represents necessary and key steps on the path to clinical use of stem cells, much work remains to be done before such cells are used in therapy.

"This gets us closer," he says. "But we still have a lot of work to do before these cells achieve their promise as treatments for neural diseases."

Svendsen says the data from the gene chip analysis would be placed online and made available to other researchers studying neural stem cells.

Other co-authors of the paper include Jiang Li, Kyle Wallace and Jeffrey A. Johnson, also of UW-Madison, and Maeve A. Caldwell of the University of Cambridge. The work was funded by grants from the Wellcome Trust, the Michael J. Fox Foundation and the Environmental Health Science Center.

Lynda Wright | University of Wisconsin
Further information:
http://www.news.wisc.edu/releases/view.html?id=8719

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>