Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neural stem cells take a step closer to the clinic

10.06.2003


Scientists working with cells that may someday be used to replace diseased or damaged cells in the brain have taken neural stem cell technology a key step closer to the clinic.

Writing in the current online edition (June 2003) of the Journal of Neurochemistry, scientists from the University of Wisconsin-Madison’s Waisman Center describe the first molecular profile for human fetal neural stem cell lines that have been coaxed to thrive in culture for more than a year.

The work is an in-depth analysis of global gene expression in human neural stem cells and demonstrates a method for prolonging the shelf life of cultured fetal stem cells, making it possible to generate enough cells to use to treat disease, says Lynda Wright, the lead author of the paper.



"We have now characterized long-term neural stem cells lines," she says. "That genetic characterization - and our ability to grow these lines for a year or more - is one of the major steps toward clinical application."

Unlike human embryonic stem cells, stem cells derived from fetal tissue are not capable of growing in culture indefinitely. But because neural fetal stem cells have been available to science for a much longer period than cells derived from embryos, their capabilities are better known to scientists and they may reach the clinic as therapies for disorders like Parkinson’s and amyotrophic lateral sclerosis (ALS) much sooner.

In culture, the cells can be coaxed into becoming "neurospheres," aggregates of precursor brain cells that, when implanted, can migrate to different parts of the brain, integrate themselves and develop into many of the different types of specialized cells that make up the brain.

"These cells are the basis for future therapies. These are the cells we want to transplant," said Clive Svendsen, senior author of the Journal of Neurochemistry paper and a leading authority on neural stem cells.

But scientists have been limited by the tendency of these cells to peter out in culture, making it difficult to generate quantities that could be used therapeutically. The Wisconsin team reported work on three cell lines that were kept growing and dividing in culture for 50 weeks.

The Wisconsin researchers were able to extend the shelf life of the neural stem cell lines by adding a signaling chemical known as leukemia inhibitory factor to the medium in which the cells were grown.

The cells were then subjected to "gene chip" analysis, a powerful method for scanning the activity of thousands of genes at once. Nearly 33,000 genes were monitored across the three cell lines to chart genetic activity. Knowing what genes are at work is critical for characterizing and preparing cells for use in transplant therapy.

"This is the first real genetic analysis of neural stem cells," says Svendsen. "It is like creating a library and a bank at the same time."

By tuning in to the genes that are at work in the neurospheres, scientists will be able to gain the molecular insight necessary to create cells that can be customized for therapy. For example, the Wisconsin group was able to monitor the activity of genes that influence immune response.

A critical hurdle for any cells or tissue used in transplants is finding ways to get around the body’s immune system, which targets foreign cells and tissue for rejection. Through genetic manipulation, it may be possible to create cells that fool the immune system, obviating the need for drugs to suppress the immune system in order for the transplant to be accepted by the body.

"We saw a huge number of MHC (major histocompatibility complex) genes that were affected," Svendsen says. "This is how cell surfaces are influenced so that the immune system can recognize them."

Svendsen emphasizes that while the new work represents necessary and key steps on the path to clinical use of stem cells, much work remains to be done before such cells are used in therapy.

"This gets us closer," he says. "But we still have a lot of work to do before these cells achieve their promise as treatments for neural diseases."

Svendsen says the data from the gene chip analysis would be placed online and made available to other researchers studying neural stem cells.

Other co-authors of the paper include Jiang Li, Kyle Wallace and Jeffrey A. Johnson, also of UW-Madison, and Maeve A. Caldwell of the University of Cambridge. The work was funded by grants from the Wellcome Trust, the Michael J. Fox Foundation and the Environmental Health Science Center.

Lynda Wright | University of Wisconsin
Further information:
http://www.news.wisc.edu/releases/view.html?id=8719

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>