Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers learning how food-borne bacteria make you sick

10.06.2003


Arun Bhunia, a microbiologist in Purdue University’s Department of Food Science, says a variety of factors enable Listeria monocytogenes to cause infection. Information from a comprehensive study on how Listeria makes people sick may lead to vaccines to prevent food poisoning. (Purdue Agricultural Communications photo/Tom Campbell)


Whether food-borne bacteria make people sick depends on a variety of factors, and better understanding of the infection process could lead to ways to stop such illnesses from occurring, according to Purdue University scientists.

In the first comprehensive study of the virulence of Listeria monocytogenes, researchers report that how well the bacteria attach to cells does not alone determine the degree of illness. The factors that determine if a person becomes ill and the degree of illness include the levels at which the pathogen attaches to intestinal cells, penetrates cell walls and then moves into other organs, said authors Arun Bhunia and Ziad Jaradat, both of the Department of Food Science. The paper is published in the June issue of Applied and Environmental Microbiology.

Listeria is one of the deadliest food-borne bacteria, with a fatality rate of 20 percent, according to the Centers for Disease Control and Prevention (CDC). It sickens about 2,500 people annually in the United States.



"I’m interested in understanding how the bacteria interacts with the intestinal cells," said Bhunia, who is part of the department’s Molecular Food Microbiology Laboratory. "If you eat food that contains these bacteria, the first place they react with cells is in the intestinal track. If we understand the initial interaction of Listeria in the gut, we might be able to prevent the binding and, therefore, the infection."

Listeria enters the body when a person eats contaminated food. Listeria then binds, or adheres, to intestinal cells. If it is a viable, disease-causing strain, it will penetrate the cell wall, causing infection. Once the bacteria have done this, the infected cells will move, or translocate, to another organ, usually the spleen or liver. Very potent Listeria strains also can cause encephalitis, or brain inflammation.

Bhunia and his co-author studied 25 strains of Listeria, including some that specifically have caused outbreaks of human illness. In the past two decades, four types of Listeria monocytogenes have been responsible for 90 percent of the outbreaks of the illness they cause, listeriosis, according to the CDC.

The researchers introduced Listeria to human intestinal cells in laboratory dishes and to mice to determine how tightly the bacteria bound to cells, how quickly they invade cells and to what organ they spread.

"This is the first comprehensive study in which this many strains of Listeria were tested for all three infection aspects – adhesion, invasion and translocation," Bhunia said. "We didn’t find any direct relationship between adhesion and invasion; adhesion is needed but is not an indicator of infection."

The lack of direct relationship between the binding of the bacteria to the cell, like a key in a lock, and how highly invasive it is, means that both factors much be evaluated for each type of Listeria, he said. Though one type may bind tightly to the cells, it may not be able to enter the cell in a way to cause illness. Conversely some strains may not adhere to the cell as well but may be highly invasive and extremely harmful.

"We also found that the strains that had caused previous outbreaks in humans were highly invasive of cells and then translocated rapidly to the brain," Bhunia said.

Only extremely infective bacteria can invade the brain because most pathogens cannot get through the brain’s protective layer, called the "blood brain barrier." Bhunia said these Listeria strains can enter the brain within 72 hours of when tainted food is eaten.

"This study gave us a good idea of how different Listeria strains bind to intestinal cells and how that relates to infection," he said. "If we understand enough of the mechanism of bacterial adhesion to cells before it actually causes damage or becomes systemic, then maybe we could come up with a strategy to prevent the illness."

The researchers are now studying individual proteins that may play a role in Listeria binding to cells, Bhunia said. If they can identify those proteins, they may be able to use genetically modified versions to prevent the infection process.

The U.S. Department of Agriculture Agricultural Research Service and the Purdue Center for Food Safety and Engineering provided funding for this study.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu

Source: Arun Bhunia, (765) 494-5443, bhuniaa@foodsci.purdue.edu

Ag Communications: (765) 494-2722; Beth Forbes, bforbes@aes.purdue.edu

Susan A. Steeves | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/030609.Bhunia.infection.html
http://www.agriculture.purdue.edu/AgComm/public/agnews/
http://www.cfse.purdue.edu/

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>