Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers learning how food-borne bacteria make you sick

10.06.2003


Arun Bhunia, a microbiologist in Purdue University’s Department of Food Science, says a variety of factors enable Listeria monocytogenes to cause infection. Information from a comprehensive study on how Listeria makes people sick may lead to vaccines to prevent food poisoning. (Purdue Agricultural Communications photo/Tom Campbell)


Whether food-borne bacteria make people sick depends on a variety of factors, and better understanding of the infection process could lead to ways to stop such illnesses from occurring, according to Purdue University scientists.

In the first comprehensive study of the virulence of Listeria monocytogenes, researchers report that how well the bacteria attach to cells does not alone determine the degree of illness. The factors that determine if a person becomes ill and the degree of illness include the levels at which the pathogen attaches to intestinal cells, penetrates cell walls and then moves into other organs, said authors Arun Bhunia and Ziad Jaradat, both of the Department of Food Science. The paper is published in the June issue of Applied and Environmental Microbiology.

Listeria is one of the deadliest food-borne bacteria, with a fatality rate of 20 percent, according to the Centers for Disease Control and Prevention (CDC). It sickens about 2,500 people annually in the United States.



"I’m interested in understanding how the bacteria interacts with the intestinal cells," said Bhunia, who is part of the department’s Molecular Food Microbiology Laboratory. "If you eat food that contains these bacteria, the first place they react with cells is in the intestinal track. If we understand the initial interaction of Listeria in the gut, we might be able to prevent the binding and, therefore, the infection."

Listeria enters the body when a person eats contaminated food. Listeria then binds, or adheres, to intestinal cells. If it is a viable, disease-causing strain, it will penetrate the cell wall, causing infection. Once the bacteria have done this, the infected cells will move, or translocate, to another organ, usually the spleen or liver. Very potent Listeria strains also can cause encephalitis, or brain inflammation.

Bhunia and his co-author studied 25 strains of Listeria, including some that specifically have caused outbreaks of human illness. In the past two decades, four types of Listeria monocytogenes have been responsible for 90 percent of the outbreaks of the illness they cause, listeriosis, according to the CDC.

The researchers introduced Listeria to human intestinal cells in laboratory dishes and to mice to determine how tightly the bacteria bound to cells, how quickly they invade cells and to what organ they spread.

"This is the first comprehensive study in which this many strains of Listeria were tested for all three infection aspects – adhesion, invasion and translocation," Bhunia said. "We didn’t find any direct relationship between adhesion and invasion; adhesion is needed but is not an indicator of infection."

The lack of direct relationship between the binding of the bacteria to the cell, like a key in a lock, and how highly invasive it is, means that both factors much be evaluated for each type of Listeria, he said. Though one type may bind tightly to the cells, it may not be able to enter the cell in a way to cause illness. Conversely some strains may not adhere to the cell as well but may be highly invasive and extremely harmful.

"We also found that the strains that had caused previous outbreaks in humans were highly invasive of cells and then translocated rapidly to the brain," Bhunia said.

Only extremely infective bacteria can invade the brain because most pathogens cannot get through the brain’s protective layer, called the "blood brain barrier." Bhunia said these Listeria strains can enter the brain within 72 hours of when tainted food is eaten.

"This study gave us a good idea of how different Listeria strains bind to intestinal cells and how that relates to infection," he said. "If we understand enough of the mechanism of bacterial adhesion to cells before it actually causes damage or becomes systemic, then maybe we could come up with a strategy to prevent the illness."

The researchers are now studying individual proteins that may play a role in Listeria binding to cells, Bhunia said. If they can identify those proteins, they may be able to use genetically modified versions to prevent the infection process.

The U.S. Department of Agriculture Agricultural Research Service and the Purdue Center for Food Safety and Engineering provided funding for this study.

Writer: Susan A. Steeves, (765) 496-7481, ssteeves@purdue.edu

Source: Arun Bhunia, (765) 494-5443, bhuniaa@foodsci.purdue.edu

Ag Communications: (765) 494-2722; Beth Forbes, bforbes@aes.purdue.edu

Susan A. Steeves | Purdue News
Further information:
http://news.uns.purdue.edu/html4ever/030609.Bhunia.infection.html
http://www.agriculture.purdue.edu/AgComm/public/agnews/
http://www.cfse.purdue.edu/

More articles from Life Sciences:

nachricht Zeolite catalysts pave the road to decentral chemical processes Confined space increases reactivity
28.06.2017 | Technische Universität München

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>