Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Going with the grain: A tale of rice’s smallest chromosome

06.06.2003


’Finished’ sequence reveals twice as many genes, cereal similarity



Behold a grain of rice. Inside are thousands of cells; within each cell are 12 chromosomes; and on rice’s smallest chromosome, No. 10, are about 3,500 genes and more than 22 million base pairs, the links in the chain of DNA.
So, what’s the big deal about rice’s smallest chromosome?

There are several, according to a report in the June 6 issue of the journal Science. Upon close examination, chromosome 10 has about twice as many genes as were predicted when an international consortium announced draft genome sequence in the same journal last December. An organism’s genome consists of the entire genetic code held in its DNA.



Of potentially greater significance, a detailed look at chromosome 10 shows that the genome map of rice is similar to other grains, particularly sorghum and maize.

The project, led by Rod A. Wing of the University of Arizona and C. Robin Buell of The Institute for Genomic Research (TIGR), was funded by the U.S. Department of Agriculture, National Science Foundation, National Institutes of Health, and the Department of Energy. A portion of chromosome 10 was also sequenced by the Plant Genome Initiative at Rutgers.

The work demonstrates the value of pursuing the full sequence in detail, said Judith Plesset, a program director in NSF’s Directorate for Biological Sciences, which supported the project. "One of the lessons here is, ’Don’t think you know everything simply because you’ve done the draft,’" she said.

According to TIGR’s Buell, getting from the draft to the finished version is painstaking and costly because the process "is not automated to any large extent" and it requires considerable lab work by an extended team of research associates.

The resulting view, however, is immensely clearer. "Like looking at the cosmos through a regular telescope, and then looking at it through the Hubble telescope," Buell said.

Focusing on rice matters because, according to the report, rice (Oryza sativa) has been cultivated for more than 9,000 years and remains a major food staple for more than half the human population.

While rice feeds half the world, its relatively simple genome helps scientists understand the genetics of other plants. According to the Science report, "Rice is considered a model system for plant biology largely due to its compact genome (430 million base pairs, or Mb, on its 12 chromosomes) and evolutionary relationships with other large-genome cereals, such as sorghum (750 Mb), maize (2,500 Mb), barley (5,000 Mb) and wheat (15,000 Mb)."

Added NSF’s Plesset, "We can use rice as a reference for understanding the organization, structure and function of much larger genomes such as maize and wheat. Scientists can use a rice gene to find its counterpart in any of the cereal genomes."

Seeking to identify the roles of the chromosome’s genes by combing through molecular databases, Buell, Wing and their colleagues compared chromosome 10’s proteins with those of another model plant, Arabidopsis, a member of the mustard family whose genome has been completely sequenced and extensively documented. Matches were found for about two-thirds of the proteins, indicating some of the specific genes responsible for enzyme production, binding of nucleic acids, cell growth and maintenance, cell communication, immunity, development and other functions and processes.

On the chromosome’s "short arm," however, they found very little that matched Arabidopsis. Instead, there they found an abundance of heterochromatin, a stretch of highly compacted DNA with few genes among it, a chromosomal substance for which the biological function is unknown.

Though much more detailed than the draft, this version is not completely finished and has seven gaps, representing about 4 percent of the total sequence.

"This," Plesset said, "is a result of the limitation of sequencing technology. As new technologies become available, these gaps will be filled."

The work reported in Science is a part of the international collaboration to sequence the entire rice genome completely. Two of the other 12 rice chromosomes, numbers 1 and 4, have also been essentially "finished," and published by the Japanese and the Chinese groups, respectively. A full sequence for chromosome 3 is expected to be announced by the end of 2003.

Sean Kearns | NSF
Further information:
http://www.nsf.gov
http://www.nsf.gov/od/lpa

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>