Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Going with the grain: A tale of rice’s smallest chromosome

06.06.2003


’Finished’ sequence reveals twice as many genes, cereal similarity



Behold a grain of rice. Inside are thousands of cells; within each cell are 12 chromosomes; and on rice’s smallest chromosome, No. 10, are about 3,500 genes and more than 22 million base pairs, the links in the chain of DNA.
So, what’s the big deal about rice’s smallest chromosome?

There are several, according to a report in the June 6 issue of the journal Science. Upon close examination, chromosome 10 has about twice as many genes as were predicted when an international consortium announced draft genome sequence in the same journal last December. An organism’s genome consists of the entire genetic code held in its DNA.



Of potentially greater significance, a detailed look at chromosome 10 shows that the genome map of rice is similar to other grains, particularly sorghum and maize.

The project, led by Rod A. Wing of the University of Arizona and C. Robin Buell of The Institute for Genomic Research (TIGR), was funded by the U.S. Department of Agriculture, National Science Foundation, National Institutes of Health, and the Department of Energy. A portion of chromosome 10 was also sequenced by the Plant Genome Initiative at Rutgers.

The work demonstrates the value of pursuing the full sequence in detail, said Judith Plesset, a program director in NSF’s Directorate for Biological Sciences, which supported the project. "One of the lessons here is, ’Don’t think you know everything simply because you’ve done the draft,’" she said.

According to TIGR’s Buell, getting from the draft to the finished version is painstaking and costly because the process "is not automated to any large extent" and it requires considerable lab work by an extended team of research associates.

The resulting view, however, is immensely clearer. "Like looking at the cosmos through a regular telescope, and then looking at it through the Hubble telescope," Buell said.

Focusing on rice matters because, according to the report, rice (Oryza sativa) has been cultivated for more than 9,000 years and remains a major food staple for more than half the human population.

While rice feeds half the world, its relatively simple genome helps scientists understand the genetics of other plants. According to the Science report, "Rice is considered a model system for plant biology largely due to its compact genome (430 million base pairs, or Mb, on its 12 chromosomes) and evolutionary relationships with other large-genome cereals, such as sorghum (750 Mb), maize (2,500 Mb), barley (5,000 Mb) and wheat (15,000 Mb)."

Added NSF’s Plesset, "We can use rice as a reference for understanding the organization, structure and function of much larger genomes such as maize and wheat. Scientists can use a rice gene to find its counterpart in any of the cereal genomes."

Seeking to identify the roles of the chromosome’s genes by combing through molecular databases, Buell, Wing and their colleagues compared chromosome 10’s proteins with those of another model plant, Arabidopsis, a member of the mustard family whose genome has been completely sequenced and extensively documented. Matches were found for about two-thirds of the proteins, indicating some of the specific genes responsible for enzyme production, binding of nucleic acids, cell growth and maintenance, cell communication, immunity, development and other functions and processes.

On the chromosome’s "short arm," however, they found very little that matched Arabidopsis. Instead, there they found an abundance of heterochromatin, a stretch of highly compacted DNA with few genes among it, a chromosomal substance for which the biological function is unknown.

Though much more detailed than the draft, this version is not completely finished and has seven gaps, representing about 4 percent of the total sequence.

"This," Plesset said, "is a result of the limitation of sequencing technology. As new technologies become available, these gaps will be filled."

The work reported in Science is a part of the international collaboration to sequence the entire rice genome completely. Two of the other 12 rice chromosomes, numbers 1 and 4, have also been essentially "finished," and published by the Japanese and the Chinese groups, respectively. A full sequence for chromosome 3 is expected to be announced by the end of 2003.

Sean Kearns | NSF
Further information:
http://www.nsf.gov
http://www.nsf.gov/od/lpa

More articles from Life Sciences:

nachricht The first genome of a coral reef fish
29.09.2016 | King Abdullah University of Science and Technology

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>