Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cloning embryos from cancer cells

04.06.2003


St. Jude researchers say reprogrammed nucleus model could offer valuable clues to how certain influencing factors combine with DNA mutations to cause tumors



Nuclei removed from mouse brain tumor cells and transplanted into mouse eggs whose own nuclei have been removed, give rise to cloned embryos with normal tissues, even though the mutations causing the cancer are still present. This research, from scientists at St. Jude Children’s Research Hospital, appears in the June 1 issue of Cancer Research.

The finding demonstrates that the cancerous state can be reversed by reprogramming the genetic material underlying the cancer, according to James Morgan, Ph.D., a member of the St. Jude Department of Developmental Neurobiology, and lead author of the study. The findings also indicate that genetic mutations alone are not always sufficient to cause a cell to become cancerous.


“Specifically, it shows that so-called epigenetic factors are key elements in the development and maintenance of tumors,” Morgan said.

Epigenetic factors are those that influence the cell’s behavior. Examples include environmental effects and chemical modification.

“The concept of epigenetic factors having a role in cancer is already largely accepted,” Morgan said. “In fact, it’s already known that epigenetic alterations of chromosomes can cause certain rare forms of cancer. And some anti-cancer agents actually target epigenetic changes. But this is the first formal proof of the theory in a living animal.”

Unlike mutations, epigenetic modifications of DNA are potentially reversible molecular events that cause changes in gene expression. Some genes that help prevent the development of cancer (e.g., tumor suppressor genes) can be targets of epigenetic factors. The inactivation of such a gene might make the DNA more vulnerable to developing a cancer-causing mutation.

The St. Jude researchers used nuclei from mouse medulloblastoma cells to create the clones. Medulloblastomas are brain tumors that tend to spread to the spinal cord. They account for about 20 percent of childhood brain tumors and most often occur in children under ten years of age.

The team, led by Morgan and department chair Tom Curran, Ph.D., placed nuclei from medulloblastoma cells into mouse eggs whose own DNA had been removed.

“Since the embryos did not develop tumors, we conclude that the cancerous properties were removed by reprogramming,” Morgan said.

“The use of mouse eggs to reprogram cancer cell DNA represents a new strategy for investigating the molecular basis of cancer,” Curran said. “By studying this model we hope to identify which epigenetic factors may contribute to this form of brain tumor. In addition, it also gives us a valuable tool for testing new therapies.”

Other authors of the study include Leyi Li, Michele Connelly and Cynthia Wetmore.


###
This work was supported in part by a National Institute of Health (NIH) Cancer Center Support CORE grant, ALSAC, the Pediatric Brain Tumor Foundation and NIH grants.

St Jude Children’s Research Hospital is internationally recognized for its pioneering work in finding cures and saving children with cancer and other catastrophic diseases. Founded by late entertainer Danny Thomas and based in Memphis, Tenn., St. Jude freely shares its discoveries with scientific and medical communities around the world. No family ever pays for treatments not covered by insurance, and families without insurance are never asked to pay. St. Jude is financially supported by ALSAC, its fund-raising organization. For more information, please visit www.stjude.org.

Bonnie Cameron | EurekAlert!
Further information:
http://www.stjude.org/

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>