Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical turns stem cells into neurons say scientists at Scripps Research Institute

03.06.2003


A group of researchers from The Scripps Research Institute (TSRI) and the Genomics Institute of the Novartis Research Foundation (GNF) have identified a small chemical molecule that controls the fate of embryonic stem cells.



"We found molecules that can direct the embryonic stem cells to [become] neurons," says Sheng Ding, who recently completed his Ph.D. work at TSRI and is becoming an assistant professor in the chemistry department. Ding is the lead author on the study, which is described in an upcoming issue of the journal Proceedings of the National Academy of Sciences.

"This is an important step in our efforts to understand how to modulate stem cell proliferation and fate," says Peter Schultz, Ph.D., TSRI professor of chemistry and Scripps Family Chair of TSRI’s Skaggs Institute for Chemical Biology.


The Promise of Stem Cell Therapy

Stem cells have huge potential in medicine because they have the ability to differentiate into many different cell types--potentially providing doctors with the ability to regenerate cells that have been permanently lost by a patient.

For instance, the damage of neurodegenerative diseases like Parkinson’s, in which dopaminergic neurons in the brain are lost, may be ameliorated by regenerating neurons. Another example is Type 1 diabetes, an autoimmune condition in which pancreatic islet cells are destroyed by the body’s immune system. Because stem cells have the power to differentiate into islet cells, stem cell therapy could potentially cure this chronic condition.

However bright this promise, many barriers must be overcome before stem cells can be used in medicine. Scientists have yet to understand the natural signaling mechanisms that control stem cell fate and to develop ways to manipulate these controls.

"We still have much to learn about how to direct stem cells to specific lineages," says Ding.

In order to address this problem, Schultz and Ding sought to find small chemical molecules that could permit precise control over the fate of pluripotent mouse embryonic stem cells--which, like human embryonic stem cells, have the ability to differentiate into all cell types.

The scientists screened some 50,000 small molecules from a combinatorial small molecule library that they synthesized at GNF. Just as a common library is filled with different books, this combinatorial library is filled with different small organic compounds.

From this assortment, Schultz and Ding designed a method to identify molecules able to differentiate the cells into neurons. They engineered embryonal carcinoma (EC) cells with a reporter gene encoding a protein called luciferase, and they inserted this luciferase gene downstream of the promoter sequence of a gene that is only expressed in neuronal cells. Then they placed these EC cells into separate wells and added different chemicals from the library to each. If the engineered EC cells in any particular well were induced to become neurons, the neurons would express luciferase--which can convert a non-luminescent substrate to a luminescent product. This product makes that well easy to detect from tens of thousands of other wells with GNF’s state-of-the-art high-throughput screening equipment.

Once they found some cells they believed to be neurons by treatment with certain small molecules, the scientists used more rigorous assays to confirm this, including staining the cells for characteristic markers and examining the shape of individual cells under the microscope. Neurons have a characteristic round soma body and asymmetric multiple processes.

In the end, Schultz and Ding found a number of molecules that were able to induce neuronal differentiation, and they chose one, called TWS119, for further studies.

When they examined the mechanism of TWS119 in detail, they found that it binds to a cellular kinase enzyme called glycogen synthase kinase-3beta (GSK-3beta). This is a multifunctional "signaling" enzyme involved in a number of physiological signaling processes whereby it modulates other enzymes by attaching a phosphate group to them.

The fact that modulating GSK-3beta leads the cells to become neurons reveals basic information on the complicated signaling cascade that turns a stem cell into a neuron. And the fact that TWS119 modulates the activity of GSK-3beta suggests that TWS119 is likely to provide new insights into the molecular mechanism that controls stem cell fate, and may ultimately be useful to in vivo stem cell therapy.

Schultz and Ding are still working on describing the exact mechanism whereby this binding directs the cell to become a neuron.


The article, "Synthetic Small Molecules that Control Stem Cell Fate" is authored by Sheng Ding, Tom Y.H. Wu, Achim Brinker, Eric C. Peters, Wooyoung Hur, Nathanael S. Gray, and Peter G. Schultz and will be available online next week at: http://www.pnas.org/cgi/10.1073/pnas.0732087100. The article will also be published in an upcoming issue of the journal Proceedings of the National Academy of Sciences.

This work was supported by The Skaggs Institute for Research, the Novartis Research Foundation, a Howard Hughes Medical Institute predoctoral fellowship, and a Humboldt Foundation postdoctoral fellowship.

Jason Bardi | EurekAlert!
Further information:
http://www.scripps.edu/
http://www.pnas.org/cgi/10.1073/pnas.0732087100

More articles from Life Sciences:

nachricht Zeolite catalysts pave the road to decentral chemical processes Confined space increases reactivity
28.06.2017 | Technische Universität München

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>