Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical turns stem cells into neurons say scientists at Scripps Research Institute

03.06.2003


A group of researchers from The Scripps Research Institute (TSRI) and the Genomics Institute of the Novartis Research Foundation (GNF) have identified a small chemical molecule that controls the fate of embryonic stem cells.



"We found molecules that can direct the embryonic stem cells to [become] neurons," says Sheng Ding, who recently completed his Ph.D. work at TSRI and is becoming an assistant professor in the chemistry department. Ding is the lead author on the study, which is described in an upcoming issue of the journal Proceedings of the National Academy of Sciences.

"This is an important step in our efforts to understand how to modulate stem cell proliferation and fate," says Peter Schultz, Ph.D., TSRI professor of chemistry and Scripps Family Chair of TSRI’s Skaggs Institute for Chemical Biology.


The Promise of Stem Cell Therapy

Stem cells have huge potential in medicine because they have the ability to differentiate into many different cell types--potentially providing doctors with the ability to regenerate cells that have been permanently lost by a patient.

For instance, the damage of neurodegenerative diseases like Parkinson’s, in which dopaminergic neurons in the brain are lost, may be ameliorated by regenerating neurons. Another example is Type 1 diabetes, an autoimmune condition in which pancreatic islet cells are destroyed by the body’s immune system. Because stem cells have the power to differentiate into islet cells, stem cell therapy could potentially cure this chronic condition.

However bright this promise, many barriers must be overcome before stem cells can be used in medicine. Scientists have yet to understand the natural signaling mechanisms that control stem cell fate and to develop ways to manipulate these controls.

"We still have much to learn about how to direct stem cells to specific lineages," says Ding.

In order to address this problem, Schultz and Ding sought to find small chemical molecules that could permit precise control over the fate of pluripotent mouse embryonic stem cells--which, like human embryonic stem cells, have the ability to differentiate into all cell types.

The scientists screened some 50,000 small molecules from a combinatorial small molecule library that they synthesized at GNF. Just as a common library is filled with different books, this combinatorial library is filled with different small organic compounds.

From this assortment, Schultz and Ding designed a method to identify molecules able to differentiate the cells into neurons. They engineered embryonal carcinoma (EC) cells with a reporter gene encoding a protein called luciferase, and they inserted this luciferase gene downstream of the promoter sequence of a gene that is only expressed in neuronal cells. Then they placed these EC cells into separate wells and added different chemicals from the library to each. If the engineered EC cells in any particular well were induced to become neurons, the neurons would express luciferase--which can convert a non-luminescent substrate to a luminescent product. This product makes that well easy to detect from tens of thousands of other wells with GNF’s state-of-the-art high-throughput screening equipment.

Once they found some cells they believed to be neurons by treatment with certain small molecules, the scientists used more rigorous assays to confirm this, including staining the cells for characteristic markers and examining the shape of individual cells under the microscope. Neurons have a characteristic round soma body and asymmetric multiple processes.

In the end, Schultz and Ding found a number of molecules that were able to induce neuronal differentiation, and they chose one, called TWS119, for further studies.

When they examined the mechanism of TWS119 in detail, they found that it binds to a cellular kinase enzyme called glycogen synthase kinase-3beta (GSK-3beta). This is a multifunctional "signaling" enzyme involved in a number of physiological signaling processes whereby it modulates other enzymes by attaching a phosphate group to them.

The fact that modulating GSK-3beta leads the cells to become neurons reveals basic information on the complicated signaling cascade that turns a stem cell into a neuron. And the fact that TWS119 modulates the activity of GSK-3beta suggests that TWS119 is likely to provide new insights into the molecular mechanism that controls stem cell fate, and may ultimately be useful to in vivo stem cell therapy.

Schultz and Ding are still working on describing the exact mechanism whereby this binding directs the cell to become a neuron.


The article, "Synthetic Small Molecules that Control Stem Cell Fate" is authored by Sheng Ding, Tom Y.H. Wu, Achim Brinker, Eric C. Peters, Wooyoung Hur, Nathanael S. Gray, and Peter G. Schultz and will be available online next week at: http://www.pnas.org/cgi/10.1073/pnas.0732087100. The article will also be published in an upcoming issue of the journal Proceedings of the National Academy of Sciences.

This work was supported by The Skaggs Institute for Research, the Novartis Research Foundation, a Howard Hughes Medical Institute predoctoral fellowship, and a Humboldt Foundation postdoctoral fellowship.

Jason Bardi | EurekAlert!
Further information:
http://www.scripps.edu/
http://www.pnas.org/cgi/10.1073/pnas.0732087100

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>