Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop new RNAi knockdown technology

02.06.2003


Scientists from the RIKEN Tsukuba Institute (Japan) have developed a valuable new experimental system for tissue-specific RNAi knockdown in mammalian cells and organisms – a discovery that will markedly advance the functional characterization of genes involved in development and disease.



Discovered in the late nineties, RNA intereference (RNAi) refers to the introduction of double-stranded RNA (dsRNA) into a cell, where it induces the degradation of complementary mRNA, and thereby suppresses gene expression. RNAi has proven to be a powerful tool in the elucidation of gene function in organisms ranging from worms, to plants and fruit flies.

However, the use of RNAi in mammals has been complicated by the antiviral response of mammalian cells to dsRNA. The presence of foreign dsRNA in a mammalian cell initiates the so-called "interferon response:" the non-specific degradation of mRNA, and ensuing death of the cell. Mammalian RNAi researchers have undertaken a few different routes to avoid eliciting the interferon response, and while some have been successful, none have been able to accomplish it in a tissue-specific manner. Until now.


As published in the June 1 issue of Genes & Development, Dr. Shunsuke Ishii and colleagues have constructed a new RNAi vector (a vehicle to introduce foreign RNA into a cell), which both side steps the interferon response and allows for the tissue-specific suppression of gene expression. This vector, called pDECAP, represents a dramatic improvement over current RNAi transgenic technology.

As Dr. Ishii explains, "In the RNAi transgenic systems developed so far, small hairpin-type RNA is expressed from the RNA polymerase III promoter or the virus promoter. However, these systems cannot be utilized to knockdown gene function in a tissue-specific manner, because these promoters are active in all types of cells. In our system, the RNA polymerase II promoter is utilized to express hairpin-type double-strand RNA (dsRNA). Therefore, our system can be used to generate the tissue-specific knockdown mice."

The pDECAP vector expresses dsRNA from an RNA polymerase II promoter, which can be actived in specific cell types. Therefore, Dr. Ishii and colleagues can pick and choose which tissues that they want to knockdown gene function in. To avoid the interferon response, Dr. Ishii and colleagues engineered the vector to transcribe dsRNA that lacks the sequences needed to export it from the nucleus into the cytosol. Instead, pDECAP-expressed dsRNA is sequestered in the nucleus, where it is processed into small interfering RNAs (siRNAs). These siRNAs are then released into the cytosol, where they direct the degradation of target mRNA without eliciting the interferon response.

Dr. Ishii and colleagues used the pDECAP system to suppress expression of the Ski oncogene in mice. These Ski-knockdown mice largely recapitulate the mutant phenotype of traditional Ski-knockout mice (in which the Ski gene has been deleted through homologous recombination of embryonic stem cells), suggesting that Dr. Ishii’s new system provides an efficient alternative to traditional mouse knockouts in the exploration of gene function.

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>