Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists develop new RNAi knockdown technology

02.06.2003


Scientists from the RIKEN Tsukuba Institute (Japan) have developed a valuable new experimental system for tissue-specific RNAi knockdown in mammalian cells and organisms – a discovery that will markedly advance the functional characterization of genes involved in development and disease.



Discovered in the late nineties, RNA intereference (RNAi) refers to the introduction of double-stranded RNA (dsRNA) into a cell, where it induces the degradation of complementary mRNA, and thereby suppresses gene expression. RNAi has proven to be a powerful tool in the elucidation of gene function in organisms ranging from worms, to plants and fruit flies.

However, the use of RNAi in mammals has been complicated by the antiviral response of mammalian cells to dsRNA. The presence of foreign dsRNA in a mammalian cell initiates the so-called "interferon response:" the non-specific degradation of mRNA, and ensuing death of the cell. Mammalian RNAi researchers have undertaken a few different routes to avoid eliciting the interferon response, and while some have been successful, none have been able to accomplish it in a tissue-specific manner. Until now.


As published in the June 1 issue of Genes & Development, Dr. Shunsuke Ishii and colleagues have constructed a new RNAi vector (a vehicle to introduce foreign RNA into a cell), which both side steps the interferon response and allows for the tissue-specific suppression of gene expression. This vector, called pDECAP, represents a dramatic improvement over current RNAi transgenic technology.

As Dr. Ishii explains, "In the RNAi transgenic systems developed so far, small hairpin-type RNA is expressed from the RNA polymerase III promoter or the virus promoter. However, these systems cannot be utilized to knockdown gene function in a tissue-specific manner, because these promoters are active in all types of cells. In our system, the RNA polymerase II promoter is utilized to express hairpin-type double-strand RNA (dsRNA). Therefore, our system can be used to generate the tissue-specific knockdown mice."

The pDECAP vector expresses dsRNA from an RNA polymerase II promoter, which can be actived in specific cell types. Therefore, Dr. Ishii and colleagues can pick and choose which tissues that they want to knockdown gene function in. To avoid the interferon response, Dr. Ishii and colleagues engineered the vector to transcribe dsRNA that lacks the sequences needed to export it from the nucleus into the cytosol. Instead, pDECAP-expressed dsRNA is sequestered in the nucleus, where it is processed into small interfering RNAs (siRNAs). These siRNAs are then released into the cytosol, where they direct the degradation of target mRNA without eliciting the interferon response.

Dr. Ishii and colleagues used the pDECAP system to suppress expression of the Ski oncogene in mice. These Ski-knockdown mice largely recapitulate the mutant phenotype of traditional Ski-knockout mice (in which the Ski gene has been deleted through homologous recombination of embryonic stem cells), suggesting that Dr. Ishii’s new system provides an efficient alternative to traditional mouse knockouts in the exploration of gene function.

Heather Cosel | EurekAlert!
Further information:
http://www.cshl.org/

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>