Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yeast genomes reveal new sites of gene control

30.05.2003


Researchers at Washington University School of Medicine in St. Louis have begun unraveling the network of genes and proteins that regulate the lives of cells. The investigators compared the genome of the yeast Saccharomyces cerevisiae (S. cerevisiae) to those of five other yeast species to identify all the locations at which molecules known as regulatory proteins attach to DNA to turn genes on and off. The study is published in the May 30 issue of the journal Science.



Among the many potential sites of gene regulation, 79 were predicted to be definitive new regulatory sites. The investigators also discovered 43 new genes and determined that 515 suspected genes are not genes at all. The findings revised the estimated number of genes in the S. cerevisiae genome from 6,331 to 5,773.

"This is the first step in understanding the gene-regulation network in a simple cell," says principal investigator Mark Johnston, Ph.D., professor of genetics and interim chair of genetics. "This work also will provide guidelines for analyzing the regulatory network of human cells, which will be a much more complex task."


Regulatory sequences are important, Johnston notes, because they are the basis of development. For example, a liver cell differs from a brain cell not because they have different genes—both cells have the same set of genes—but because of the genes they use. And that’s determined by the regulatory sequences that activate one set of genes in the liver and another set in the brain. A variety of diseases, including cancer, are caused by problems in gene regulation.

Identifying gene regulatory sites is not easy, however. These regions serve as docking sites for DNA binding proteins that turn the gene on or off. They lack the typical DNA patterns that help scientists recognize the body of the gene, which contains information about the structure of a protein.

Johnston and his colleagues compared the genomes of S. cerevisiae to five other yeast species, hypothesizing that the regions that were most alike in all six would be potential regulatory sites.

The investigators found about 8,000 of these conserved sites, about one-third of which already were known regulatory sequences. After eliminating the known sites from the total, the investigators searched for other evidence that these sites are functional, and pinpointed 79 sites located within or near genes which are excellent candidates for new regulatory sequences.

The team will is now refining the number of sites by determining which yeast regulatory proteins bind to the them.

"Now," Johnston says, "we can begin tackling the really interesting question: how a relatively small number of regulatory proteins coordinate the activity of more than 5,700 genes to maintain a healthy, growing yeast cell."


Cliften P, Sudarsanam P, Desikan A, Fulton L, Fulton B, Majors J, Waterston R, Cohen BA, Johnston M. Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science, May 30, 2003.

Funding from the National Institute of General Sciences supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>