Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Yeast genomes reveal new sites of gene control

30.05.2003


Researchers at Washington University School of Medicine in St. Louis have begun unraveling the network of genes and proteins that regulate the lives of cells. The investigators compared the genome of the yeast Saccharomyces cerevisiae (S. cerevisiae) to those of five other yeast species to identify all the locations at which molecules known as regulatory proteins attach to DNA to turn genes on and off. The study is published in the May 30 issue of the journal Science.



Among the many potential sites of gene regulation, 79 were predicted to be definitive new regulatory sites. The investigators also discovered 43 new genes and determined that 515 suspected genes are not genes at all. The findings revised the estimated number of genes in the S. cerevisiae genome from 6,331 to 5,773.

"This is the first step in understanding the gene-regulation network in a simple cell," says principal investigator Mark Johnston, Ph.D., professor of genetics and interim chair of genetics. "This work also will provide guidelines for analyzing the regulatory network of human cells, which will be a much more complex task."


Regulatory sequences are important, Johnston notes, because they are the basis of development. For example, a liver cell differs from a brain cell not because they have different genes—both cells have the same set of genes—but because of the genes they use. And that’s determined by the regulatory sequences that activate one set of genes in the liver and another set in the brain. A variety of diseases, including cancer, are caused by problems in gene regulation.

Identifying gene regulatory sites is not easy, however. These regions serve as docking sites for DNA binding proteins that turn the gene on or off. They lack the typical DNA patterns that help scientists recognize the body of the gene, which contains information about the structure of a protein.

Johnston and his colleagues compared the genomes of S. cerevisiae to five other yeast species, hypothesizing that the regions that were most alike in all six would be potential regulatory sites.

The investigators found about 8,000 of these conserved sites, about one-third of which already were known regulatory sequences. After eliminating the known sites from the total, the investigators searched for other evidence that these sites are functional, and pinpointed 79 sites located within or near genes which are excellent candidates for new regulatory sequences.

The team will is now refining the number of sites by determining which yeast regulatory proteins bind to the them.

"Now," Johnston says, "we can begin tackling the really interesting question: how a relatively small number of regulatory proteins coordinate the activity of more than 5,700 genes to maintain a healthy, growing yeast cell."


Cliften P, Sudarsanam P, Desikan A, Fulton L, Fulton B, Majors J, Waterston R, Cohen BA, Johnston M. Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science, May 30, 2003.

Funding from the National Institute of General Sciences supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Life Sciences:

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA's fermi finds possible dark matter ties in andromeda galaxy

22.02.2017 | Physics and Astronomy

Wintering ducks connect isolated wetlands by dispersing plant seeds

22.02.2017 | Life Sciences

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>