Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists use DNA fragments to trace the migration of modern humans

28.05.2003


Human beings may have made their first journey out of Africa as recently as 70,000 years ago, according to a new study by geneticists from Stanford University and the Russian Academy of Sciences. Writing in the American Journal of Human Genetics, the researchers estimate that the entire population of ancestral humans at the time of the African expansion consisted of only about 2,000 individuals.



"This estimate does not preclude the presence of other populations of Homo sapiens sapiens [modern humans] in Africa, although it suggests that they were probably isolated from one another genetically, and that contemporary worldwide populations descend from one or very few of those populations," said Marcus W. Feldman, the Burnet C. and Mildred Finley Wohlford Professor at Stanford and co-author of the study.

The small size of our ancestral population may explain why there is so little genetic variability in human DNA compared with that of chimpanzees and other closely related species, Feldman added.


The study, published in the May edition of the journal, is based on research conducted in Feldman`s Stanford laboratory in collaboration with co-authors Lev A. Zhivotovsky of the Russian Academy and former Stanford graduate student Noah A. Rosenberg, now at the University of Southern California.

"Our results are consistent with the `out-of-Africa` theory, according to which a sub-Saharan African ancestral population gave rise to all populations of anatomically modern humans through a chain of migrations to the Middle East, Europe, Asia, Oceania and America," Feldman noted.

Ancient roots

Since all human beings have virtually identical DNA, geneticists have to look for slight chemical variations that distinguish one population from another. One technique involves the use of "microsatellites" - short repetitive fragments of DNA whose patterns of variation differ among populations. Because microsatellites are passed from generation to generation and have a high mutation rate, they are a useful tool for estimating when two populations diverged.

In their study, the research team compared 377 microsatellite markers in DNA collected from 1,056 individuals representing 52 geographic sites in Africa, Eurasia (the Middle East, Europe, Central and South Asia), East Asia, Oceania and the Americas.

Statistical analysis of the microsatellite data revealed a close genetic relationship between two hunter-gatherer populations in sub-Saharan Africa - the Mbuti pygmies of the Congo Basin and the Khoisan (or "bushmen") of Botswana and Namibia. These two populations "may represent the oldest branch of modern humans studied here," the authors concluded.

The data revealed a genetic split between the ancestors of these hunter-gatherer populations and the ancestors of contemporary African farming people - Bantu speakers who inhabit many countries in southern Africa. "This division occurred between 70,000 and 140,000 years ago and was followed by the expansion out of Africa into Eurasia, Oceania, East Asia and the Americas - in that order," Feldman said.

This result is consistent with an earlier study in which Feldman and others analyzed the Y chromosomes of more than 1,000 men from 21 different populations. In that study, the researchers concluded that the first human migration from Africa may have occurred roughly 66,000 years ago.

Population bottlenecks

The research team also found that indigenous hunter-gatherer populations in Africa, the Americas and Oceania have experienced very little growth over time. "Hunting and gathering could not support a significant increase in population size," Feldman explained. "These populations probably underwent severe bottlenecks during which their numbers crashed - possibly because of limited resources, diseases and, in some cases, the effects of long-distance migrations."

Unlike hunter-gatherers, the ancestors of sub-Saharan African farming populations appear to have experienced a population expansion that started around 35,000 years ago: "This increase in population sizes might have been preceded by technological innovations that led to an increase in survival and then an increase in the overall birth rate," the authors wrote. The peoples of Eurasia and East Asia also show evidence of population expansion starting about 25,000 years ago, they added.

"The exciting thing about these data is that they are amenable to a combination of mathematical models and statistical analyses that can help solve problems that are important in paleontology, archaeology and anthropology," Feldman concluded.


The research was supported by grants from the National Institutes of Health, the National Science Foundation and the Russian Foundation for Basic Research.

Mark Shwartz | EurekAlert!
Further information:
http://www.neanderthal-modern.com/genetic1.htm
http://www-evo.stanford.edu/
http://www.stanford.edu/dept/news/

More articles from Life Sciences:

nachricht Nesting aids make agricultural fields attractive for bees
20.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht The Kitchen Sponge – Breeding Ground for Germs
20.07.2017 | Hochschule Furtwangen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>