Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists use DNA fragments to trace the migration of modern humans

28.05.2003


Human beings may have made their first journey out of Africa as recently as 70,000 years ago, according to a new study by geneticists from Stanford University and the Russian Academy of Sciences. Writing in the American Journal of Human Genetics, the researchers estimate that the entire population of ancestral humans at the time of the African expansion consisted of only about 2,000 individuals.



"This estimate does not preclude the presence of other populations of Homo sapiens sapiens [modern humans] in Africa, although it suggests that they were probably isolated from one another genetically, and that contemporary worldwide populations descend from one or very few of those populations," said Marcus W. Feldman, the Burnet C. and Mildred Finley Wohlford Professor at Stanford and co-author of the study.

The small size of our ancestral population may explain why there is so little genetic variability in human DNA compared with that of chimpanzees and other closely related species, Feldman added.


The study, published in the May edition of the journal, is based on research conducted in Feldman`s Stanford laboratory in collaboration with co-authors Lev A. Zhivotovsky of the Russian Academy and former Stanford graduate student Noah A. Rosenberg, now at the University of Southern California.

"Our results are consistent with the `out-of-Africa` theory, according to which a sub-Saharan African ancestral population gave rise to all populations of anatomically modern humans through a chain of migrations to the Middle East, Europe, Asia, Oceania and America," Feldman noted.

Ancient roots

Since all human beings have virtually identical DNA, geneticists have to look for slight chemical variations that distinguish one population from another. One technique involves the use of "microsatellites" - short repetitive fragments of DNA whose patterns of variation differ among populations. Because microsatellites are passed from generation to generation and have a high mutation rate, they are a useful tool for estimating when two populations diverged.

In their study, the research team compared 377 microsatellite markers in DNA collected from 1,056 individuals representing 52 geographic sites in Africa, Eurasia (the Middle East, Europe, Central and South Asia), East Asia, Oceania and the Americas.

Statistical analysis of the microsatellite data revealed a close genetic relationship between two hunter-gatherer populations in sub-Saharan Africa - the Mbuti pygmies of the Congo Basin and the Khoisan (or "bushmen") of Botswana and Namibia. These two populations "may represent the oldest branch of modern humans studied here," the authors concluded.

The data revealed a genetic split between the ancestors of these hunter-gatherer populations and the ancestors of contemporary African farming people - Bantu speakers who inhabit many countries in southern Africa. "This division occurred between 70,000 and 140,000 years ago and was followed by the expansion out of Africa into Eurasia, Oceania, East Asia and the Americas - in that order," Feldman said.

This result is consistent with an earlier study in which Feldman and others analyzed the Y chromosomes of more than 1,000 men from 21 different populations. In that study, the researchers concluded that the first human migration from Africa may have occurred roughly 66,000 years ago.

Population bottlenecks

The research team also found that indigenous hunter-gatherer populations in Africa, the Americas and Oceania have experienced very little growth over time. "Hunting and gathering could not support a significant increase in population size," Feldman explained. "These populations probably underwent severe bottlenecks during which their numbers crashed - possibly because of limited resources, diseases and, in some cases, the effects of long-distance migrations."

Unlike hunter-gatherers, the ancestors of sub-Saharan African farming populations appear to have experienced a population expansion that started around 35,000 years ago: "This increase in population sizes might have been preceded by technological innovations that led to an increase in survival and then an increase in the overall birth rate," the authors wrote. The peoples of Eurasia and East Asia also show evidence of population expansion starting about 25,000 years ago, they added.

"The exciting thing about these data is that they are amenable to a combination of mathematical models and statistical analyses that can help solve problems that are important in paleontology, archaeology and anthropology," Feldman concluded.


The research was supported by grants from the National Institutes of Health, the National Science Foundation and the Russian Foundation for Basic Research.

Mark Shwartz | EurekAlert!
Further information:
http://www.neanderthal-modern.com/genetic1.htm
http://www-evo.stanford.edu/
http://www.stanford.edu/dept/news/

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>