Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists use DNA fragments to trace the migration of modern humans

28.05.2003


Human beings may have made their first journey out of Africa as recently as 70,000 years ago, according to a new study by geneticists from Stanford University and the Russian Academy of Sciences. Writing in the American Journal of Human Genetics, the researchers estimate that the entire population of ancestral humans at the time of the African expansion consisted of only about 2,000 individuals.



"This estimate does not preclude the presence of other populations of Homo sapiens sapiens [modern humans] in Africa, although it suggests that they were probably isolated from one another genetically, and that contemporary worldwide populations descend from one or very few of those populations," said Marcus W. Feldman, the Burnet C. and Mildred Finley Wohlford Professor at Stanford and co-author of the study.

The small size of our ancestral population may explain why there is so little genetic variability in human DNA compared with that of chimpanzees and other closely related species, Feldman added.


The study, published in the May edition of the journal, is based on research conducted in Feldman`s Stanford laboratory in collaboration with co-authors Lev A. Zhivotovsky of the Russian Academy and former Stanford graduate student Noah A. Rosenberg, now at the University of Southern California.

"Our results are consistent with the `out-of-Africa` theory, according to which a sub-Saharan African ancestral population gave rise to all populations of anatomically modern humans through a chain of migrations to the Middle East, Europe, Asia, Oceania and America," Feldman noted.

Ancient roots

Since all human beings have virtually identical DNA, geneticists have to look for slight chemical variations that distinguish one population from another. One technique involves the use of "microsatellites" - short repetitive fragments of DNA whose patterns of variation differ among populations. Because microsatellites are passed from generation to generation and have a high mutation rate, they are a useful tool for estimating when two populations diverged.

In their study, the research team compared 377 microsatellite markers in DNA collected from 1,056 individuals representing 52 geographic sites in Africa, Eurasia (the Middle East, Europe, Central and South Asia), East Asia, Oceania and the Americas.

Statistical analysis of the microsatellite data revealed a close genetic relationship between two hunter-gatherer populations in sub-Saharan Africa - the Mbuti pygmies of the Congo Basin and the Khoisan (or "bushmen") of Botswana and Namibia. These two populations "may represent the oldest branch of modern humans studied here," the authors concluded.

The data revealed a genetic split between the ancestors of these hunter-gatherer populations and the ancestors of contemporary African farming people - Bantu speakers who inhabit many countries in southern Africa. "This division occurred between 70,000 and 140,000 years ago and was followed by the expansion out of Africa into Eurasia, Oceania, East Asia and the Americas - in that order," Feldman said.

This result is consistent with an earlier study in which Feldman and others analyzed the Y chromosomes of more than 1,000 men from 21 different populations. In that study, the researchers concluded that the first human migration from Africa may have occurred roughly 66,000 years ago.

Population bottlenecks

The research team also found that indigenous hunter-gatherer populations in Africa, the Americas and Oceania have experienced very little growth over time. "Hunting and gathering could not support a significant increase in population size," Feldman explained. "These populations probably underwent severe bottlenecks during which their numbers crashed - possibly because of limited resources, diseases and, in some cases, the effects of long-distance migrations."

Unlike hunter-gatherers, the ancestors of sub-Saharan African farming populations appear to have experienced a population expansion that started around 35,000 years ago: "This increase in population sizes might have been preceded by technological innovations that led to an increase in survival and then an increase in the overall birth rate," the authors wrote. The peoples of Eurasia and East Asia also show evidence of population expansion starting about 25,000 years ago, they added.

"The exciting thing about these data is that they are amenable to a combination of mathematical models and statistical analyses that can help solve problems that are important in paleontology, archaeology and anthropology," Feldman concluded.


The research was supported by grants from the National Institutes of Health, the National Science Foundation and the Russian Foundation for Basic Research.

Mark Shwartz | EurekAlert!
Further information:
http://www.neanderthal-modern.com/genetic1.htm
http://www-evo.stanford.edu/
http://www.stanford.edu/dept/news/

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>