Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Eating bats linked to neurological disease


Flying fox feeding on cycad seeds (courtesy of Dr. Merlin Tuttle, Bat Conservation International)

Maybe you really are what you eat. This would solve the long-time mystery of why so many of Guam’s Chamorro people – up to a third per village -- suffered a devastating neurological disease. A new study suggests that they gorged on flying fox bats that in turn had feasted on neurotoxin-laden cycad seeds.

"Through the consumption of cycad-fed flying foxes, the Chamorro people may have unwittingly ingested large quantities of cycad neurotoxins," say Clark Monson of the University of Hawaii, Honolulu, Sandra Banack of California State University, Fullerton, and Paul Cox of the National Tropical Botanical Garden in Kalaheo, Hawaii, in the June issue of Conservation Biology.

Guam’s indigenous Chamorro people historically had a high incidence of a neurological disease with similarities to Lou Gehrig’s, Parkinson’s and Alzheimer’s diseases. Called ALS-PDC (amyotrophic lateral sclerosis-Parkinsonian dementia complex), the disease’s symptoms range from muscle weakness and paralysis to dementia. The rate of ALS-PDC has been as much as 100 times higher in Guam’s Chamorro people than in the continental U.S.

Monson and his colleagues hypothesized that the answer might be another thing unique to Guam’s Chamorro people: they love to eat the local flying foxes. These bats, which have a three-foot wing span, are served at Chamorro weddings, village fiestas and religious events. The preparation is simple: wash and boil whole, and then eat the entire bat -- wings, brains, fur and all.

Eating too many of these flying foxes could be dangerous because they like to eat cycad seeds, which contain a neurotoxin called BMAA (beta-methylamino L-alanine). The bats are probably neurotoxin-rich because studies have shown that when rats ingest BMAA, most (90%) of it stays in their bodies rather than being excreted.

Several lines of evidence support the link between eating these bats and contracting the neurological disease. Previous studies have shown that Chamorro populations outside of Guam do not have higher incidences of the disease, suggesting that it is caused by an environmental factor. In addition, the disease is three times more common in men than in women, and men like to eat the entire bat while women tend to eat only the breast meat. Finally, the incidence of the disease rose after people began hunting flying foxes for commercial trade and then dropped as the bat population fell.

Eating wildlife has threatened people’s health in other cases. Thousands of people in Kyushu, Japan, who ate mercury-contaminated fish suffered neurological problems, birth defects or even death. And people living in the Faroe Islands eat whale meat and have high levels of mercury and PCBs.

Eating wild animals that have not been commercially traded for a long time may be particularly risky because they could have unknown health risks. "We urge caution in the consumption of recently commercialized wildlife species," say Monson and his colleagues.

Clark Monson | Society for Conservation Biology
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>