Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eating bats linked to neurological disease

26.05.2003


Flying fox feeding on cycad seeds (courtesy of Dr. Merlin Tuttle, Bat Conservation International)


Maybe you really are what you eat. This would solve the long-time mystery of why so many of Guam’s Chamorro people – up to a third per village -- suffered a devastating neurological disease. A new study suggests that they gorged on flying fox bats that in turn had feasted on neurotoxin-laden cycad seeds.

"Through the consumption of cycad-fed flying foxes, the Chamorro people may have unwittingly ingested large quantities of cycad neurotoxins," say Clark Monson of the University of Hawaii, Honolulu, Sandra Banack of California State University, Fullerton, and Paul Cox of the National Tropical Botanical Garden in Kalaheo, Hawaii, in the June issue of Conservation Biology.

Guam’s indigenous Chamorro people historically had a high incidence of a neurological disease with similarities to Lou Gehrig’s, Parkinson’s and Alzheimer’s diseases. Called ALS-PDC (amyotrophic lateral sclerosis-Parkinsonian dementia complex), the disease’s symptoms range from muscle weakness and paralysis to dementia. The rate of ALS-PDC has been as much as 100 times higher in Guam’s Chamorro people than in the continental U.S.



Monson and his colleagues hypothesized that the answer might be another thing unique to Guam’s Chamorro people: they love to eat the local flying foxes. These bats, which have a three-foot wing span, are served at Chamorro weddings, village fiestas and religious events. The preparation is simple: wash and boil whole, and then eat the entire bat -- wings, brains, fur and all.

Eating too many of these flying foxes could be dangerous because they like to eat cycad seeds, which contain a neurotoxin called BMAA (beta-methylamino L-alanine). The bats are probably neurotoxin-rich because studies have shown that when rats ingest BMAA, most (90%) of it stays in their bodies rather than being excreted.

Several lines of evidence support the link between eating these bats and contracting the neurological disease. Previous studies have shown that Chamorro populations outside of Guam do not have higher incidences of the disease, suggesting that it is caused by an environmental factor. In addition, the disease is three times more common in men than in women, and men like to eat the entire bat while women tend to eat only the breast meat. Finally, the incidence of the disease rose after people began hunting flying foxes for commercial trade and then dropped as the bat population fell.

Eating wildlife has threatened people’s health in other cases. Thousands of people in Kyushu, Japan, who ate mercury-contaminated fish suffered neurological problems, birth defects or even death. And people living in the Faroe Islands eat whale meat and have high levels of mercury and PCBs.

Eating wild animals that have not been commercially traded for a long time may be particularly risky because they could have unknown health risks. "We urge caution in the consumption of recently commercialized wildlife species," say Monson and his colleagues.

Clark Monson | Society for Conservation Biology
Further information:
http://conbio.net/scb
http://www.conbio.org/SCB/Services/Tips/2003-6-June.cfm#A2

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>