Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Essential gene for male fertility found

23.05.2003


Mice without Fkbp6 gene have significantly reduced testes, completely lack sperm cells


Figure 2:
Panel A shows a normal-sized testes in male mice (on left) versus a significantly reduced testes size in mice without the Fkbp6 gene. Panels B and D show normal sperm cells in normal male mice while the large white areas in panels C and E indicate a lack of mature sperm cells in Fkbp6 negative mice. Panel F shows spermatids, spermatocytes and tails (all needed for healthy sperm cells) versus panel G which indicates that none of these components exist.
Images: Dr. Josef Penninger, University of Toronto.


On the left side, panels A, C and E are microscopic images of the tissues of normal mice testes. On the right side, panels B, D and F shows large white holes, indicating that all mature sperm cells are dead.
Images: Dr. Josef Penninger, University of Toronto.



A gene that belongs to a family of genes implicated in heart disease has been found to be essential for male fertility but has no impact on female fertility, researchers at U of T, along with colleagues in New York and Japan, have discovered.

"This gene - Fkbp6 - is a member of a family of genes that have been implicated in immunosuppression and heart disease," says Dr. Josef Penninger, professor of medical biophysics and immunology at U of T and senior author of a new paper in the May 23 issue of Science. "That this gene would control male fertility was completely unexpected. We originally thought Fkbp6 was important for heart function but the only place we could find it was in sperm and oocytes."


Penninger and post-doctoral fellow Michael Crackower made the surprising discovery when they eliminated the Fkbp6 gene in genetically engineered mice. When the gene was removed, the oocytes (cells in the early phases of egg development) in female mice appeared normal but all the sperm cells in males had died, resulting in complete infertility. Penninger and Crackower realized their work bore striking similarities to some research by Japanese scientists who, over the past decade, have been studying a naturally occurring mutation in rats that also caused aspermia (lack of sperm). The U of T researchers recognized that the genetic mutation in their mice was similar to the spontaneous mutation seen in the rats.

Penninger and Crackower studied the cells and tissue and found that the mice completely lacked spermatids, the male germ cells which eventually develop into spermatozoa, an elemental part of semen. The deletion of the Fkbp6 gene was isolated as the cause for the infertility in mice.

It has been estimated that 15 per cent of couples around the world remain childless because of infertility but few genetic causes have been identified. However, Penninger says, given the mice and rat data, it would be interesting to test whether mutations in the Fkbp6 gene also account for human infertility.

He and his team started this work three years ago looking at heart disease, thinking that Fkbp6 would have a primary role in heart function. "We found no link between this gene and heart disease but we did find that our male mice were unable to breed. When we investigated further, we found that the size of the testes of our mice were massively reduced and that they produced no sperm cells," he recalls.

"Fkbp6 only acts in sperm cells and we found no other defects in our mice besides sex-specific male infertility. While our male mice showed normal sexual behavior and had normal levels of sex hormones, they completely lacked sperm cells. So it’s possible that Fkbp6 might be the perfect target for the development of a male birth control pill."

As an additional finding, the researchers say the Fkbp6 gene plays a fundamental role in the normal life of chromosomes in sperm cells. Penninger’s group found that Fkbp6 is part of the protein complex that binds maternal and paternal chromosomes in oocytes and sperm cells, a process carried out by meiosis. Meiosis occurs in all sexually reproducing species and allows the genetic exchange between maternal and paternal genomes.

In normal life, each chromosome partners with a chromosome of corresponding structure, position and origin. Penninger and his fellow researchers found that when the Fkbp6 gene was removed from the mice, the chromosomes were unable to identify their correct partners and, instead, paired with non-corresponding chromosomes. Defects in chromosome alignment or genome segregation in germ cells can result in aneuploidies, where subjects carry chromosomes above or below the normal chromosome number. Aneuploidy is a leading cause of spontaneous miscarriages in humans and a trait in many human cancer cells.

Penninger says their research suggests that a protein produced by the Fkbp6 gene is a critical molecule for the proper pairing of chromosomes and that other Fkbp6 family proteins may also play a role in controlling the pairing of chromosomes. "The mispairing of chromosomes is a hallmark of cancer. Almost by mistake, we may have uncovered a completely new principle in how cells control the number of chromosomes we have and how this could change into tumor cells," he says.

The research was funded by the Natural Sciences and Engineering Research Council of Canada, the Institute of Molecular Biotechnology of the Austrian Academy of Sciences, the Canada Research Chair program, the Canadian Institutes of Health Research and the Albert Einstein College of Medicine in Bronx, N.Y.


CONTACT:

Dr. Josef Penninger, Department of Medical Biophysics, ph: (416) 946-2391; email: jpenning@uhnres.utoronto.ca


U of T Public Affairs, ph: (416) 978-8638; email: jf.wong@utoronto.ca


Janet Wong | University of Toronto
Further information:
http://www.newsandevents.utoronto.ca/bin5/030522a.asp

More articles from Life Sciences:

nachricht Are there sustainable solutions in dealing with dwindling phosphorus resources?
16.10.2017 | Leibniz-Institut für Nutzierbiologie (FBN)

nachricht Strange undertakings: ant queens bury dead to prevent disease
13.10.2017 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>