Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Essential gene for male fertility found

23.05.2003


Mice without Fkbp6 gene have significantly reduced testes, completely lack sperm cells


Figure 2:
Panel A shows a normal-sized testes in male mice (on left) versus a significantly reduced testes size in mice without the Fkbp6 gene. Panels B and D show normal sperm cells in normal male mice while the large white areas in panels C and E indicate a lack of mature sperm cells in Fkbp6 negative mice. Panel F shows spermatids, spermatocytes and tails (all needed for healthy sperm cells) versus panel G which indicates that none of these components exist.
Images: Dr. Josef Penninger, University of Toronto.


On the left side, panels A, C and E are microscopic images of the tissues of normal mice testes. On the right side, panels B, D and F shows large white holes, indicating that all mature sperm cells are dead.
Images: Dr. Josef Penninger, University of Toronto.



A gene that belongs to a family of genes implicated in heart disease has been found to be essential for male fertility but has no impact on female fertility, researchers at U of T, along with colleagues in New York and Japan, have discovered.

"This gene - Fkbp6 - is a member of a family of genes that have been implicated in immunosuppression and heart disease," says Dr. Josef Penninger, professor of medical biophysics and immunology at U of T and senior author of a new paper in the May 23 issue of Science. "That this gene would control male fertility was completely unexpected. We originally thought Fkbp6 was important for heart function but the only place we could find it was in sperm and oocytes."


Penninger and post-doctoral fellow Michael Crackower made the surprising discovery when they eliminated the Fkbp6 gene in genetically engineered mice. When the gene was removed, the oocytes (cells in the early phases of egg development) in female mice appeared normal but all the sperm cells in males had died, resulting in complete infertility. Penninger and Crackower realized their work bore striking similarities to some research by Japanese scientists who, over the past decade, have been studying a naturally occurring mutation in rats that also caused aspermia (lack of sperm). The U of T researchers recognized that the genetic mutation in their mice was similar to the spontaneous mutation seen in the rats.

Penninger and Crackower studied the cells and tissue and found that the mice completely lacked spermatids, the male germ cells which eventually develop into spermatozoa, an elemental part of semen. The deletion of the Fkbp6 gene was isolated as the cause for the infertility in mice.

It has been estimated that 15 per cent of couples around the world remain childless because of infertility but few genetic causes have been identified. However, Penninger says, given the mice and rat data, it would be interesting to test whether mutations in the Fkbp6 gene also account for human infertility.

He and his team started this work three years ago looking at heart disease, thinking that Fkbp6 would have a primary role in heart function. "We found no link between this gene and heart disease but we did find that our male mice were unable to breed. When we investigated further, we found that the size of the testes of our mice were massively reduced and that they produced no sperm cells," he recalls.

"Fkbp6 only acts in sperm cells and we found no other defects in our mice besides sex-specific male infertility. While our male mice showed normal sexual behavior and had normal levels of sex hormones, they completely lacked sperm cells. So it’s possible that Fkbp6 might be the perfect target for the development of a male birth control pill."

As an additional finding, the researchers say the Fkbp6 gene plays a fundamental role in the normal life of chromosomes in sperm cells. Penninger’s group found that Fkbp6 is part of the protein complex that binds maternal and paternal chromosomes in oocytes and sperm cells, a process carried out by meiosis. Meiosis occurs in all sexually reproducing species and allows the genetic exchange between maternal and paternal genomes.

In normal life, each chromosome partners with a chromosome of corresponding structure, position and origin. Penninger and his fellow researchers found that when the Fkbp6 gene was removed from the mice, the chromosomes were unable to identify their correct partners and, instead, paired with non-corresponding chromosomes. Defects in chromosome alignment or genome segregation in germ cells can result in aneuploidies, where subjects carry chromosomes above or below the normal chromosome number. Aneuploidy is a leading cause of spontaneous miscarriages in humans and a trait in many human cancer cells.

Penninger says their research suggests that a protein produced by the Fkbp6 gene is a critical molecule for the proper pairing of chromosomes and that other Fkbp6 family proteins may also play a role in controlling the pairing of chromosomes. "The mispairing of chromosomes is a hallmark of cancer. Almost by mistake, we may have uncovered a completely new principle in how cells control the number of chromosomes we have and how this could change into tumor cells," he says.

The research was funded by the Natural Sciences and Engineering Research Council of Canada, the Institute of Molecular Biotechnology of the Austrian Academy of Sciences, the Canada Research Chair program, the Canadian Institutes of Health Research and the Albert Einstein College of Medicine in Bronx, N.Y.


CONTACT:

Dr. Josef Penninger, Department of Medical Biophysics, ph: (416) 946-2391; email: jpenning@uhnres.utoronto.ca


U of T Public Affairs, ph: (416) 978-8638; email: jf.wong@utoronto.ca


Janet Wong | University of Toronto
Further information:
http://www.newsandevents.utoronto.ca/bin5/030522a.asp

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>