Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making sense of the genome

22.05.2003

Almost every week we hear of a new genome sequence being completed, yet turning sequence information into knowledge about what individual genes do is very difficult. An article published in Journal of Biology this week will simplify this task, as it describes a new online tool that dramatically improves predictions of how individual genes are regulated.

Dr. Wyeth Wasserman and his team have created this powerful new two-step method for identifying which regulators of gene expression, called transcription factors, are in control of individual genes. The new method is far more selective than its predecessors, reducing the number of biologically irrelevant transcription factors identified in a search by 85%. The researchers have now made the tool available through an easy to use website called ConSite.

This web-based tool will be particularly helpful in analysing genes whose coding sequences do not give any clues as to their function. Around 30% of the predicted human genes contain no recognisable domains. Through knowing which transcription factors control the expression of a particular gene, scientists can get an idea as to what processes the gene is involved in. This is because transcription factors are themselves tightly controlled to ensure that a gene is only expressed when and where it is needed, and a great deal is already known about which events activate which transcription factors.

"Knowledge of the identity of a mediating transcription factor can give important insights into the function of a gene," according to the authors of the article.

Transcription factors act by binding to specific sequences in a regulatory region that is located in the DNA upstream of the coding region. But they can tolerate a large amount of variation in these sequences. This means that searching an upstream regulatory region for transcription factor binding sites identifies a large number of such sites, most of which are biologically irrelevant.

The researchers successfully increased the signal to noise ratio of such searches by using a powerful combination of two methods. Firstly, the regulatory sequences are scanned for binding sites, but only for those that are known to be biologically active. For this comparison, Wasserman’s team compiled a searchable database of 108 transcription factor binding profiles from the relevant literature. The sites listed originate from mammals, insects and nematodes, and all are supported by good experimental evidence. These experiments provide essential information about the in vivo properties necessary for binding that are not contained in the sequence alone.

Secondly, the researchers use an alignment tool to compare the regulatory sequences of the same gene from two different species, and check which sites are conserved across evolution. "The most valuable information in the search for regulatory regions in genomic sequences is conservation. If a region is found to be conserved between a human genomic sequence and an orthologous genomic sequence from a distantly related organism, it is extremely likely to have a biological role," write the authors.

To test their two-step method, the researchers used it to identify the transcription factors that bind to the upstream regulatory regions of 14 well-studied genes. Using human and mouse sequences, the researchers found that all of the transcription factors identified did have a biological role and only a few of the physiologically relevant regulators were missed. A second test showed that the evolutionary distance between the two input sequences was vital in determining the effectiveness of the combined method.

This tool is now available to all scientists free of charge via the ConSite website: http://www.phylofoot.org/ Any scientist with a gene of interest will be able to input the regulatory sequence of their pet gene with or without the regulatory sequence of an orthologous gene into the ConSite tool, and will be rewarded with a list of probable regulators.

Gemma Bradley | BioMed Central
Further information:
http://jbiol.com/content/2/2/13
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht Cells migrate collectively by intermittent bursts of activity
30.09.2016 | Aalto University

nachricht The structure of the BinAB toxin revealed: one small step for Man, a major problem for mosquitoes!
30.09.2016 | CNRS (Délégation Paris Michel-Ange)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>