Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making sense of the genome

22.05.2003

Almost every week we hear of a new genome sequence being completed, yet turning sequence information into knowledge about what individual genes do is very difficult. An article published in Journal of Biology this week will simplify this task, as it describes a new online tool that dramatically improves predictions of how individual genes are regulated.

Dr. Wyeth Wasserman and his team have created this powerful new two-step method for identifying which regulators of gene expression, called transcription factors, are in control of individual genes. The new method is far more selective than its predecessors, reducing the number of biologically irrelevant transcription factors identified in a search by 85%. The researchers have now made the tool available through an easy to use website called ConSite.

This web-based tool will be particularly helpful in analysing genes whose coding sequences do not give any clues as to their function. Around 30% of the predicted human genes contain no recognisable domains. Through knowing which transcription factors control the expression of a particular gene, scientists can get an idea as to what processes the gene is involved in. This is because transcription factors are themselves tightly controlled to ensure that a gene is only expressed when and where it is needed, and a great deal is already known about which events activate which transcription factors.

"Knowledge of the identity of a mediating transcription factor can give important insights into the function of a gene," according to the authors of the article.

Transcription factors act by binding to specific sequences in a regulatory region that is located in the DNA upstream of the coding region. But they can tolerate a large amount of variation in these sequences. This means that searching an upstream regulatory region for transcription factor binding sites identifies a large number of such sites, most of which are biologically irrelevant.

The researchers successfully increased the signal to noise ratio of such searches by using a powerful combination of two methods. Firstly, the regulatory sequences are scanned for binding sites, but only for those that are known to be biologically active. For this comparison, Wasserman’s team compiled a searchable database of 108 transcription factor binding profiles from the relevant literature. The sites listed originate from mammals, insects and nematodes, and all are supported by good experimental evidence. These experiments provide essential information about the in vivo properties necessary for binding that are not contained in the sequence alone.

Secondly, the researchers use an alignment tool to compare the regulatory sequences of the same gene from two different species, and check which sites are conserved across evolution. "The most valuable information in the search for regulatory regions in genomic sequences is conservation. If a region is found to be conserved between a human genomic sequence and an orthologous genomic sequence from a distantly related organism, it is extremely likely to have a biological role," write the authors.

To test their two-step method, the researchers used it to identify the transcription factors that bind to the upstream regulatory regions of 14 well-studied genes. Using human and mouse sequences, the researchers found that all of the transcription factors identified did have a biological role and only a few of the physiologically relevant regulators were missed. A second test showed that the evolutionary distance between the two input sequences was vital in determining the effectiveness of the combined method.

This tool is now available to all scientists free of charge via the ConSite website: http://www.phylofoot.org/ Any scientist with a gene of interest will be able to input the regulatory sequence of their pet gene with or without the regulatory sequence of an orthologous gene into the ConSite tool, and will be rewarded with a list of probable regulators.

Gemma Bradley | BioMed Central
Further information:
http://jbiol.com/content/2/2/13
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>