Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Making sense of the genome


Almost every week we hear of a new genome sequence being completed, yet turning sequence information into knowledge about what individual genes do is very difficult. An article published in Journal of Biology this week will simplify this task, as it describes a new online tool that dramatically improves predictions of how individual genes are regulated.

Dr. Wyeth Wasserman and his team have created this powerful new two-step method for identifying which regulators of gene expression, called transcription factors, are in control of individual genes. The new method is far more selective than its predecessors, reducing the number of biologically irrelevant transcription factors identified in a search by 85%. The researchers have now made the tool available through an easy to use website called ConSite.

This web-based tool will be particularly helpful in analysing genes whose coding sequences do not give any clues as to their function. Around 30% of the predicted human genes contain no recognisable domains. Through knowing which transcription factors control the expression of a particular gene, scientists can get an idea as to what processes the gene is involved in. This is because transcription factors are themselves tightly controlled to ensure that a gene is only expressed when and where it is needed, and a great deal is already known about which events activate which transcription factors.

"Knowledge of the identity of a mediating transcription factor can give important insights into the function of a gene," according to the authors of the article.

Transcription factors act by binding to specific sequences in a regulatory region that is located in the DNA upstream of the coding region. But they can tolerate a large amount of variation in these sequences. This means that searching an upstream regulatory region for transcription factor binding sites identifies a large number of such sites, most of which are biologically irrelevant.

The researchers successfully increased the signal to noise ratio of such searches by using a powerful combination of two methods. Firstly, the regulatory sequences are scanned for binding sites, but only for those that are known to be biologically active. For this comparison, Wasserman’s team compiled a searchable database of 108 transcription factor binding profiles from the relevant literature. The sites listed originate from mammals, insects and nematodes, and all are supported by good experimental evidence. These experiments provide essential information about the in vivo properties necessary for binding that are not contained in the sequence alone.

Secondly, the researchers use an alignment tool to compare the regulatory sequences of the same gene from two different species, and check which sites are conserved across evolution. "The most valuable information in the search for regulatory regions in genomic sequences is conservation. If a region is found to be conserved between a human genomic sequence and an orthologous genomic sequence from a distantly related organism, it is extremely likely to have a biological role," write the authors.

To test their two-step method, the researchers used it to identify the transcription factors that bind to the upstream regulatory regions of 14 well-studied genes. Using human and mouse sequences, the researchers found that all of the transcription factors identified did have a biological role and only a few of the physiologically relevant regulators were missed. A second test showed that the evolutionary distance between the two input sequences was vital in determining the effectiveness of the combined method.

This tool is now available to all scientists free of charge via the ConSite website: Any scientist with a gene of interest will be able to input the regulatory sequence of their pet gene with or without the regulatory sequence of an orthologous gene into the ConSite tool, and will be rewarded with a list of probable regulators.

Gemma Bradley | BioMed Central
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>