Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse study suggests mammoth evolutionary change

22.05.2003


The white-footed mouse
Credit: Jim Schulz, Brookfield Zoo


A study of a common wild mouse by two University of Illinois at Chicago biologists has found evidence of dramatic evolutionary change in a span of just 150 years, suggesting genetic evolution can occur a lot faster than many had thought possible.
The findings are the first report of such quick evolution in a mammal and appear in the May 22 issue of the journal Nature.

Oliver Pergams, a conservation biology researcher with the Chicago Zoological Society in Brookfield, Ill. and visiting research assistant professor at UIC, conducted the research as his Ph.D. thesis project at UIC with Dennis Nyberg, associate professor of biology.


Pergams’ study began as a comparison of the genetics of two mice common to the Chicago region -- the white-footed mouse and the prairie deer mouse. But the search for historical samples quickly showed the white-footed mouse had squeezed out the prairie deer mouse from its dominant position, diminishing the samples needed to do a comparative study, so Pergams and Nyberg focused attention on the white-footed mouse.

"This intensified focus resulted in our discovery of rapid evolution," said Pergams. "It was a great surprise. We were simply trying to quantify the amount of genetic variation over time, not show evolution."

The researchers analyzed DNA samples taken from 56 museum specimens dating as far back as 1855, along with 52 recently captured mice from local forest preserves and state parks. Wayne Barnes, professor of biochemistry and molecular biophysics at the Washington University in St. Louis School of Medicine, assisted in analyzing the DNA.

The changes in gene sequence frequencies were dramatic, Pergams said, across the three 50-year intervals studied.

Only one of the mice from the latest period had the same DNA sequence as the most common sequence among the mice collected before 1950. The first mouse with the sequence currently common was captured back in 1906 at Volo Bog, some 45 miles northwest of Chicago. That discovery prompted Pergams to get all the museum specimens that were collected in Illinois’ Cook and Lake counties.

The researchers used DNA taken not from the nucleus, but from mitochondria, the power plants of the cell. Each cell contains many mitochondria, but only one nucleus.

"If you are working with very degraded, ancient DNA like that from museum skins, you are way ahead using this DNA with lots of copies," said Pergams. Mitochondrial DNA evolves much more rapidly than nuclear DNA, he said, though this evolution was previously thought only to occur over thousands of years.

"We did not expect to find the rapid, consistent and directional change that we did find," he said.

While evidence of such fast change has been cited in studies of fruit flies, this is the first reported study to document such quick evolution in a mammal.

What may account for this change?

"We think it likely that the new gene sequence was either unconditionally advantageous, or that it was advantageous relative to environmental changes caused by humans," Pergams said.

"Settlers may have brought in mice with the favorable gene that were able to out-compete mice with the native variant. A less likely possibility is that mice with these new gene sequences were already present, and that dramatic changes that humans caused in the environment allowed the new gene sequence to be selectively advantageous."

Since all the mice studied were caught in forest preserves and parks, Pergams and Nyberg consider the second alternative unlikely. Future studies should reveal if the favorable gene is in older mouse specimens held by museums in other parts of the country.

In any event, Pergams thinks this research may have broad implications.

"It suggests that humans are a likely cause of such rapid evolution," Pergams said, "and that much of current phylogenetic and phylogeographic methodology may be flawed because it does not take the possibility of rapid mitochondrial DNA evolution into account."

"It also suggests that the ’molecular clock’ may sometimes, and sporadically, tick blindingly fast."

Paul Francuch | EurekAlert!
Further information:
http://www.uic.edu/

More articles from Life Sciences:

nachricht No gene is an island
25.07.2017 | Institute of Science and Technology Austria

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>