Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mouse study suggests mammoth evolutionary change

22.05.2003


The white-footed mouse
Credit: Jim Schulz, Brookfield Zoo


A study of a common wild mouse by two University of Illinois at Chicago biologists has found evidence of dramatic evolutionary change in a span of just 150 years, suggesting genetic evolution can occur a lot faster than many had thought possible.
The findings are the first report of such quick evolution in a mammal and appear in the May 22 issue of the journal Nature.

Oliver Pergams, a conservation biology researcher with the Chicago Zoological Society in Brookfield, Ill. and visiting research assistant professor at UIC, conducted the research as his Ph.D. thesis project at UIC with Dennis Nyberg, associate professor of biology.


Pergams’ study began as a comparison of the genetics of two mice common to the Chicago region -- the white-footed mouse and the prairie deer mouse. But the search for historical samples quickly showed the white-footed mouse had squeezed out the prairie deer mouse from its dominant position, diminishing the samples needed to do a comparative study, so Pergams and Nyberg focused attention on the white-footed mouse.

"This intensified focus resulted in our discovery of rapid evolution," said Pergams. "It was a great surprise. We were simply trying to quantify the amount of genetic variation over time, not show evolution."

The researchers analyzed DNA samples taken from 56 museum specimens dating as far back as 1855, along with 52 recently captured mice from local forest preserves and state parks. Wayne Barnes, professor of biochemistry and molecular biophysics at the Washington University in St. Louis School of Medicine, assisted in analyzing the DNA.

The changes in gene sequence frequencies were dramatic, Pergams said, across the three 50-year intervals studied.

Only one of the mice from the latest period had the same DNA sequence as the most common sequence among the mice collected before 1950. The first mouse with the sequence currently common was captured back in 1906 at Volo Bog, some 45 miles northwest of Chicago. That discovery prompted Pergams to get all the museum specimens that were collected in Illinois’ Cook and Lake counties.

The researchers used DNA taken not from the nucleus, but from mitochondria, the power plants of the cell. Each cell contains many mitochondria, but only one nucleus.

"If you are working with very degraded, ancient DNA like that from museum skins, you are way ahead using this DNA with lots of copies," said Pergams. Mitochondrial DNA evolves much more rapidly than nuclear DNA, he said, though this evolution was previously thought only to occur over thousands of years.

"We did not expect to find the rapid, consistent and directional change that we did find," he said.

While evidence of such fast change has been cited in studies of fruit flies, this is the first reported study to document such quick evolution in a mammal.

What may account for this change?

"We think it likely that the new gene sequence was either unconditionally advantageous, or that it was advantageous relative to environmental changes caused by humans," Pergams said.

"Settlers may have brought in mice with the favorable gene that were able to out-compete mice with the native variant. A less likely possibility is that mice with these new gene sequences were already present, and that dramatic changes that humans caused in the environment allowed the new gene sequence to be selectively advantageous."

Since all the mice studied were caught in forest preserves and parks, Pergams and Nyberg consider the second alternative unlikely. Future studies should reveal if the favorable gene is in older mouse specimens held by museums in other parts of the country.

In any event, Pergams thinks this research may have broad implications.

"It suggests that humans are a likely cause of such rapid evolution," Pergams said, "and that much of current phylogenetic and phylogeographic methodology may be flawed because it does not take the possibility of rapid mitochondrial DNA evolution into account."

"It also suggests that the ’molecular clock’ may sometimes, and sporadically, tick blindingly fast."

Paul Francuch | EurekAlert!
Further information:
http://www.uic.edu/

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>