Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Mouse study suggests mammoth evolutionary change


The white-footed mouse
Credit: Jim Schulz, Brookfield Zoo

A study of a common wild mouse by two University of Illinois at Chicago biologists has found evidence of dramatic evolutionary change in a span of just 150 years, suggesting genetic evolution can occur a lot faster than many had thought possible.
The findings are the first report of such quick evolution in a mammal and appear in the May 22 issue of the journal Nature.

Oliver Pergams, a conservation biology researcher with the Chicago Zoological Society in Brookfield, Ill. and visiting research assistant professor at UIC, conducted the research as his Ph.D. thesis project at UIC with Dennis Nyberg, associate professor of biology.

Pergams’ study began as a comparison of the genetics of two mice common to the Chicago region -- the white-footed mouse and the prairie deer mouse. But the search for historical samples quickly showed the white-footed mouse had squeezed out the prairie deer mouse from its dominant position, diminishing the samples needed to do a comparative study, so Pergams and Nyberg focused attention on the white-footed mouse.

"This intensified focus resulted in our discovery of rapid evolution," said Pergams. "It was a great surprise. We were simply trying to quantify the amount of genetic variation over time, not show evolution."

The researchers analyzed DNA samples taken from 56 museum specimens dating as far back as 1855, along with 52 recently captured mice from local forest preserves and state parks. Wayne Barnes, professor of biochemistry and molecular biophysics at the Washington University in St. Louis School of Medicine, assisted in analyzing the DNA.

The changes in gene sequence frequencies were dramatic, Pergams said, across the three 50-year intervals studied.

Only one of the mice from the latest period had the same DNA sequence as the most common sequence among the mice collected before 1950. The first mouse with the sequence currently common was captured back in 1906 at Volo Bog, some 45 miles northwest of Chicago. That discovery prompted Pergams to get all the museum specimens that were collected in Illinois’ Cook and Lake counties.

The researchers used DNA taken not from the nucleus, but from mitochondria, the power plants of the cell. Each cell contains many mitochondria, but only one nucleus.

"If you are working with very degraded, ancient DNA like that from museum skins, you are way ahead using this DNA with lots of copies," said Pergams. Mitochondrial DNA evolves much more rapidly than nuclear DNA, he said, though this evolution was previously thought only to occur over thousands of years.

"We did not expect to find the rapid, consistent and directional change that we did find," he said.

While evidence of such fast change has been cited in studies of fruit flies, this is the first reported study to document such quick evolution in a mammal.

What may account for this change?

"We think it likely that the new gene sequence was either unconditionally advantageous, or that it was advantageous relative to environmental changes caused by humans," Pergams said.

"Settlers may have brought in mice with the favorable gene that were able to out-compete mice with the native variant. A less likely possibility is that mice with these new gene sequences were already present, and that dramatic changes that humans caused in the environment allowed the new gene sequence to be selectively advantageous."

Since all the mice studied were caught in forest preserves and parks, Pergams and Nyberg consider the second alternative unlikely. Future studies should reveal if the favorable gene is in older mouse specimens held by museums in other parts of the country.

In any event, Pergams thinks this research may have broad implications.

"It suggests that humans are a likely cause of such rapid evolution," Pergams said, "and that much of current phylogenetic and phylogeographic methodology may be flawed because it does not take the possibility of rapid mitochondrial DNA evolution into account."

"It also suggests that the ’molecular clock’ may sometimes, and sporadically, tick blindingly fast."

Paul Francuch | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>