Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser measurements reveal biological basis of distance perception

21.05.2003


Using a laser range-finder, neurobiologists have scanned real-life scenes to gather millions of distance measurements to surfaces in each scene -- analyzing the mass of data to explain a series of long-known but little-understood quirks in how people judge distances.



The measurements reveal, for example, that the tendency of people to estimate the distance of isolated objects as being six to 12 feet away arises because that is the average distance of actual objects and surfaces in the visual scenes people encounter.

Thus, said the Duke University Medical Center neurobiologists, the findings support their theory that the visual system has evolved to make the best statistical guess about distances and other features of visual scenes, based on past experience.


The researchers, Zhiyong Yang and Dale Purves, published their findings in the June 2003 issue of "Nature Neuroscience" (online version posted May 18, 2003). Their research was supported by the National Institutes of Health and the Geller Endowment. Yang is a postdoctoral fellow and Purves is the George B. Geller Professor for Research in Neurobiology.

"All the characteristics of the visual world that we take for granted -- for example the diminution of size with distance -- are a result of perception," said Purves. "So, a question for centuries has been, ’What is the biological reason we see space in the peculiar way that we do?’"

In their past research on the perception of the geometry, color, brightness and motion, Purves and his colleagues have accumulated evidence that visual processing is not the result of logical calculations about the image that falls on the retina of the eye as such. Rather, they have shown that vision is a fundamentally empirical phenomenon, in which the connections between nerve cells in the visual system evolved as a result of the success of organisms that correctly interpreted the inherently ambiguous visual world. Such ambiguity arises because the photons striking the retina do not carry any inherent information about their origins; thus the visual system must process retinal information statistically to correctly interpret a visual world that can’t be known directly.

In the "Nature Neuroscience" paper, Yang and Purves described how they used a laser range-finder -- which scans a scene and automatically records data about the distance to each of millions of point in a scene -- to scan about a hundred real scenes in the Duke Forest, on the Duke campus and inside campus buildings. These distance data were fed into a computer to analyze the distance to the multitude of points in the scenes.

Their purpose was to discover the natural basis for a number of inherent tendencies people exhibit when asked to judge distances. These tendencies include the "specific distance tendency," in which people shown an isolated object in a dark room with no other distance context judge that object to be six to 12 feet away.

Another tendency, called the "equidistance tendency," is for people shown two objects side by side in such circumstances to invariably judge them to be the same distance away. Other tendencies explored by Yang and Purves include the influence on distance estimates of objects due to eye-level, angle of sight and intervening ground surface structure, such as dips or humps.

"Researchers have known about these odd aspects of estimated distance for decades, but haven’t found a good explanation for them," said Purves. "For the most part, people have just taken it for granted that these are the odd ways that we see things." Some researchers had used mathematical or geometrical theories to attempt to explain one or the other of these phenomena, but such approaches have failed, said Purves. The analysis by Yang of the massive amount of distance data on real world visual scenes, however, revealed that all of these tendencies reflect the statistics of the way objects are, on average, related to the observer.

"This evidence shows, for example, that our tendency to judge the distance of objects as being two to four meters away arises because that’s really the average distance of surfaces when you use a laser to measure the actual distances of everything in a scene," said Purves. Similarly, he said, the statistical analyses of the scenes match the known influence on distance estimation of such parameters as the distance away of two objects in a scene, of the distance of objects at eye-level, at various angles of declination, and of objects separated from the observer by intervening ground structures.

"What we found so extraordinary is that the rationale for this whole set of basic distance judgment phenomena simply falls out of the measured distances that typically exist in the environment," said Purves. "All these peculiar perceptions reflect the probabilistic structure of the environment with respect to the distance from us of the points on object surfaces.

"Thus, for the first time, we’re providing a biological basis to explain these phenomena," he said. "You see distances in this way because reflected light from points in space that project onto your retina is completely ambiguous with respect to how far away that point really is. The observer nonetheless has to solve the problem of what’s out there. The visual system has evidently evolved to use the statistics of past experience to ’understand’ what those distances are most likely to be, and that is what you see."

Dennis Meredith | EurekAlert!
Further information:
http://www.duke.edu/

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>