Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser measurements reveal biological basis of distance perception

21.05.2003


Using a laser range-finder, neurobiologists have scanned real-life scenes to gather millions of distance measurements to surfaces in each scene -- analyzing the mass of data to explain a series of long-known but little-understood quirks in how people judge distances.



The measurements reveal, for example, that the tendency of people to estimate the distance of isolated objects as being six to 12 feet away arises because that is the average distance of actual objects and surfaces in the visual scenes people encounter.

Thus, said the Duke University Medical Center neurobiologists, the findings support their theory that the visual system has evolved to make the best statistical guess about distances and other features of visual scenes, based on past experience.


The researchers, Zhiyong Yang and Dale Purves, published their findings in the June 2003 issue of "Nature Neuroscience" (online version posted May 18, 2003). Their research was supported by the National Institutes of Health and the Geller Endowment. Yang is a postdoctoral fellow and Purves is the George B. Geller Professor for Research in Neurobiology.

"All the characteristics of the visual world that we take for granted -- for example the diminution of size with distance -- are a result of perception," said Purves. "So, a question for centuries has been, ’What is the biological reason we see space in the peculiar way that we do?’"

In their past research on the perception of the geometry, color, brightness and motion, Purves and his colleagues have accumulated evidence that visual processing is not the result of logical calculations about the image that falls on the retina of the eye as such. Rather, they have shown that vision is a fundamentally empirical phenomenon, in which the connections between nerve cells in the visual system evolved as a result of the success of organisms that correctly interpreted the inherently ambiguous visual world. Such ambiguity arises because the photons striking the retina do not carry any inherent information about their origins; thus the visual system must process retinal information statistically to correctly interpret a visual world that can’t be known directly.

In the "Nature Neuroscience" paper, Yang and Purves described how they used a laser range-finder -- which scans a scene and automatically records data about the distance to each of millions of point in a scene -- to scan about a hundred real scenes in the Duke Forest, on the Duke campus and inside campus buildings. These distance data were fed into a computer to analyze the distance to the multitude of points in the scenes.

Their purpose was to discover the natural basis for a number of inherent tendencies people exhibit when asked to judge distances. These tendencies include the "specific distance tendency," in which people shown an isolated object in a dark room with no other distance context judge that object to be six to 12 feet away.

Another tendency, called the "equidistance tendency," is for people shown two objects side by side in such circumstances to invariably judge them to be the same distance away. Other tendencies explored by Yang and Purves include the influence on distance estimates of objects due to eye-level, angle of sight and intervening ground surface structure, such as dips or humps.

"Researchers have known about these odd aspects of estimated distance for decades, but haven’t found a good explanation for them," said Purves. "For the most part, people have just taken it for granted that these are the odd ways that we see things." Some researchers had used mathematical or geometrical theories to attempt to explain one or the other of these phenomena, but such approaches have failed, said Purves. The analysis by Yang of the massive amount of distance data on real world visual scenes, however, revealed that all of these tendencies reflect the statistics of the way objects are, on average, related to the observer.

"This evidence shows, for example, that our tendency to judge the distance of objects as being two to four meters away arises because that’s really the average distance of surfaces when you use a laser to measure the actual distances of everything in a scene," said Purves. Similarly, he said, the statistical analyses of the scenes match the known influence on distance estimation of such parameters as the distance away of two objects in a scene, of the distance of objects at eye-level, at various angles of declination, and of objects separated from the observer by intervening ground structures.

"What we found so extraordinary is that the rationale for this whole set of basic distance judgment phenomena simply falls out of the measured distances that typically exist in the environment," said Purves. "All these peculiar perceptions reflect the probabilistic structure of the environment with respect to the distance from us of the points on object surfaces.

"Thus, for the first time, we’re providing a biological basis to explain these phenomena," he said. "You see distances in this way because reflected light from points in space that project onto your retina is completely ambiguous with respect to how far away that point really is. The observer nonetheless has to solve the problem of what’s out there. The visual system has evidently evolved to use the statistics of past experience to ’understand’ what those distances are most likely to be, and that is what you see."

Dennis Meredith | EurekAlert!
Further information:
http://www.duke.edu/

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>