Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Laser measurements reveal biological basis of distance perception

21.05.2003


Using a laser range-finder, neurobiologists have scanned real-life scenes to gather millions of distance measurements to surfaces in each scene -- analyzing the mass of data to explain a series of long-known but little-understood quirks in how people judge distances.



The measurements reveal, for example, that the tendency of people to estimate the distance of isolated objects as being six to 12 feet away arises because that is the average distance of actual objects and surfaces in the visual scenes people encounter.

Thus, said the Duke University Medical Center neurobiologists, the findings support their theory that the visual system has evolved to make the best statistical guess about distances and other features of visual scenes, based on past experience.


The researchers, Zhiyong Yang and Dale Purves, published their findings in the June 2003 issue of "Nature Neuroscience" (online version posted May 18, 2003). Their research was supported by the National Institutes of Health and the Geller Endowment. Yang is a postdoctoral fellow and Purves is the George B. Geller Professor for Research in Neurobiology.

"All the characteristics of the visual world that we take for granted -- for example the diminution of size with distance -- are a result of perception," said Purves. "So, a question for centuries has been, ’What is the biological reason we see space in the peculiar way that we do?’"

In their past research on the perception of the geometry, color, brightness and motion, Purves and his colleagues have accumulated evidence that visual processing is not the result of logical calculations about the image that falls on the retina of the eye as such. Rather, they have shown that vision is a fundamentally empirical phenomenon, in which the connections between nerve cells in the visual system evolved as a result of the success of organisms that correctly interpreted the inherently ambiguous visual world. Such ambiguity arises because the photons striking the retina do not carry any inherent information about their origins; thus the visual system must process retinal information statistically to correctly interpret a visual world that can’t be known directly.

In the "Nature Neuroscience" paper, Yang and Purves described how they used a laser range-finder -- which scans a scene and automatically records data about the distance to each of millions of point in a scene -- to scan about a hundred real scenes in the Duke Forest, on the Duke campus and inside campus buildings. These distance data were fed into a computer to analyze the distance to the multitude of points in the scenes.

Their purpose was to discover the natural basis for a number of inherent tendencies people exhibit when asked to judge distances. These tendencies include the "specific distance tendency," in which people shown an isolated object in a dark room with no other distance context judge that object to be six to 12 feet away.

Another tendency, called the "equidistance tendency," is for people shown two objects side by side in such circumstances to invariably judge them to be the same distance away. Other tendencies explored by Yang and Purves include the influence on distance estimates of objects due to eye-level, angle of sight and intervening ground surface structure, such as dips or humps.

"Researchers have known about these odd aspects of estimated distance for decades, but haven’t found a good explanation for them," said Purves. "For the most part, people have just taken it for granted that these are the odd ways that we see things." Some researchers had used mathematical or geometrical theories to attempt to explain one or the other of these phenomena, but such approaches have failed, said Purves. The analysis by Yang of the massive amount of distance data on real world visual scenes, however, revealed that all of these tendencies reflect the statistics of the way objects are, on average, related to the observer.

"This evidence shows, for example, that our tendency to judge the distance of objects as being two to four meters away arises because that’s really the average distance of surfaces when you use a laser to measure the actual distances of everything in a scene," said Purves. Similarly, he said, the statistical analyses of the scenes match the known influence on distance estimation of such parameters as the distance away of two objects in a scene, of the distance of objects at eye-level, at various angles of declination, and of objects separated from the observer by intervening ground structures.

"What we found so extraordinary is that the rationale for this whole set of basic distance judgment phenomena simply falls out of the measured distances that typically exist in the environment," said Purves. "All these peculiar perceptions reflect the probabilistic structure of the environment with respect to the distance from us of the points on object surfaces.

"Thus, for the first time, we’re providing a biological basis to explain these phenomena," he said. "You see distances in this way because reflected light from points in space that project onto your retina is completely ambiguous with respect to how far away that point really is. The observer nonetheless has to solve the problem of what’s out there. The visual system has evidently evolved to use the statistics of past experience to ’understand’ what those distances are most likely to be, and that is what you see."

Dennis Meredith | EurekAlert!
Further information:
http://www.duke.edu/

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>