Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U. of Colorado scientists discover four new kingdoms of life

20.05.2003


University of Colorado at Boulder researchers have discovered four new kingdoms of life in the high alpine environment of Colorado, findings that have potential applications in the fields of agriculture and global change.



Doctoral student Allen Meyer and Professor Steven Schmidt of the environmental, population and organismic biology department discovered the new microbe kingdoms in barren, boulder-filled tundra slopes west of Boulder.

At altitudes of 11,000 feet to 13,000 feet in elevation just east of the Continental Divide, the region is subject to nine months of snow and three months of intense sun and wind, said Meyer.


Although scientists in the 18th century originally classified the kingdoms of life into two groups -- plants and animals -- many scientists now believe there are many more, including fungi and a number of types of single-celled organisms. Because of new scientific tools resulting in sophisticated DNA analysis, the number of kingdoms was estimated to be about 30 before the CU-Boulder findings, said Meyer.

Funded by the National Science Foundation’s program, "Microbial Observatories," the findings will be presented at the 103rd General Meeting of the American Society for Microbiology in Washington, D.C. by Allen on May 19.

Meyer and Schmidt used a novel molecular technique that extracts DNA from the soil to identify the organisms living there. "The discovery of new kingdoms means more undiscovered species exist," said Meyer. The researchers concentrated their research on eukaryotic microbes -- microscopic organisms that have a membrane around their DNA. The number of microbe species has been growing as scientists use new DNA techniques to uncover the family of eukaryotes, they said.

Unearthing new organisms might even help in solving practical problems in agriculture and ecology, Meyer said. "Newly discovered microbial eukaryotes could be of benefit in understanding soil diversity that may be important in predicting impacts of global change, for example."

In addition, newly discovered eukaryotes could potentially be of benefit in newer sewage treatment plants to help other microbes convert nitrates from agricultural pollution into harmless nitrogen and oxygen, he said. The CU-Boulder researchers might even be able to find new microbes to fight off disease in plants.

"These family trees, or phylogenies, help scientists group organisms into kingdoms," said Meyer. The most important of these approaches involves the small, sub-unit ribosomal gene, key for making proteins."

Instead of culturing organisms, Meyer and Schmidt extracted DNA directly from the soil, obtaining DNA from all the soil organisms at once. Comparing their gene sequencing results with those of known eukaryote organisms allowed them to discover the sequences from the four new kingdoms.

Although they have the sequences of four previously unknown kingdoms, they have not yet identified the specific organisms themselves, said Schmidt. "But now that we know these microbes are in the alpine soil, we can go back and isolate them in these extreme environments and study them.

"We will be using PCR, or polymerase chain reaction, to amplify and identify organisms to get a snapshot of the diversity of soil-organism diversity in the high alpine," said Schmidt.

"Another important issue is that our alpine regions are changing rapidly, said Schmidt.

"Depending on the pattern of decreasing snow cover over the past several years, we are racing to identify the species before bigger changes occur and some of the species disappear before they can be identified."


###
Contact: Allen Meyer, 303-492-8239
Allen.Meyer@colorado.edu
Steve Schmidt, 303-492-6248
Steve.Schmidt@colorado.edu
Jim Scott 303-492-3114

Alen Meyer | EurekAlert!
Further information:
http://www.colorado.edu/

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>