Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U. of Colorado scientists discover four new kingdoms of life

20.05.2003


University of Colorado at Boulder researchers have discovered four new kingdoms of life in the high alpine environment of Colorado, findings that have potential applications in the fields of agriculture and global change.



Doctoral student Allen Meyer and Professor Steven Schmidt of the environmental, population and organismic biology department discovered the new microbe kingdoms in barren, boulder-filled tundra slopes west of Boulder.

At altitudes of 11,000 feet to 13,000 feet in elevation just east of the Continental Divide, the region is subject to nine months of snow and three months of intense sun and wind, said Meyer.


Although scientists in the 18th century originally classified the kingdoms of life into two groups -- plants and animals -- many scientists now believe there are many more, including fungi and a number of types of single-celled organisms. Because of new scientific tools resulting in sophisticated DNA analysis, the number of kingdoms was estimated to be about 30 before the CU-Boulder findings, said Meyer.

Funded by the National Science Foundation’s program, "Microbial Observatories," the findings will be presented at the 103rd General Meeting of the American Society for Microbiology in Washington, D.C. by Allen on May 19.

Meyer and Schmidt used a novel molecular technique that extracts DNA from the soil to identify the organisms living there. "The discovery of new kingdoms means more undiscovered species exist," said Meyer. The researchers concentrated their research on eukaryotic microbes -- microscopic organisms that have a membrane around their DNA. The number of microbe species has been growing as scientists use new DNA techniques to uncover the family of eukaryotes, they said.

Unearthing new organisms might even help in solving practical problems in agriculture and ecology, Meyer said. "Newly discovered microbial eukaryotes could be of benefit in understanding soil diversity that may be important in predicting impacts of global change, for example."

In addition, newly discovered eukaryotes could potentially be of benefit in newer sewage treatment plants to help other microbes convert nitrates from agricultural pollution into harmless nitrogen and oxygen, he said. The CU-Boulder researchers might even be able to find new microbes to fight off disease in plants.

"These family trees, or phylogenies, help scientists group organisms into kingdoms," said Meyer. The most important of these approaches involves the small, sub-unit ribosomal gene, key for making proteins."

Instead of culturing organisms, Meyer and Schmidt extracted DNA directly from the soil, obtaining DNA from all the soil organisms at once. Comparing their gene sequencing results with those of known eukaryote organisms allowed them to discover the sequences from the four new kingdoms.

Although they have the sequences of four previously unknown kingdoms, they have not yet identified the specific organisms themselves, said Schmidt. "But now that we know these microbes are in the alpine soil, we can go back and isolate them in these extreme environments and study them.

"We will be using PCR, or polymerase chain reaction, to amplify and identify organisms to get a snapshot of the diversity of soil-organism diversity in the high alpine," said Schmidt.

"Another important issue is that our alpine regions are changing rapidly, said Schmidt.

"Depending on the pattern of decreasing snow cover over the past several years, we are racing to identify the species before bigger changes occur and some of the species disappear before they can be identified."


###
Contact: Allen Meyer, 303-492-8239
Allen.Meyer@colorado.edu
Steve Schmidt, 303-492-6248
Steve.Schmidt@colorado.edu
Jim Scott 303-492-3114

Alen Meyer | EurekAlert!
Further information:
http://www.colorado.edu/

More articles from Life Sciences:

nachricht Flavins keep a handy helper in their pocket
25.04.2018 | University of Freiburg

nachricht Complete skin regeneration system of fish unraveled
24.04.2018 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>