Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Phage therapy could remove foodborne disease from livestock

19.05.2003


A bacteria-killing virus found in the feces of some sheep could help remove the dangerous foodborne bacteria Escherichia coli O157:H7 from livestock. Researchers from Evergreen State College in Olympia, Washington present their research today at the 103rd General Meeting of the American Society for Microbiology.



"Here we report a promising new natural way of reducing pathogen concentrations in livestock. This takes advantage of bacteriophages – bacteria-killing viruses, harmless to humans and other animals, which have been used extensively as antibiotics in Eastern Europe and the former Soviet Union for over 50 years," says Michael Dyen, one of the study researchers.

Dyen and his colleagues report on a new bacteriophage (CEV1) that they isolated from the feces of sheep naturally resistant to gut colonization by E. coli O157:H7. Preliminary trials of CEV1 in the lab have shown that it can be produced easily and can efficiently infect and kill the bacteria under proper conditions. In model systems reflecting the cow/sheep gut, CEV1 completely eliminated the bacteria in 11 days.


"CEV1 and other carefully-selected phages against E. coli O157:H7 could be used to develop an effective management strategy to eradicate this pathogen from livestock," says Dyen.

Outbreaks of Escherichia coli O157:H7 have been linked to the consumption of hamburger meat, alfalfa sprouts, unpasteurized fruit juice, and even drinking water; more than 75% of the cases can be directly traced to contamination from carrier ruminants. The most recent data suggest that about 28% of the cattle presented for slaughter in the US harbour O157:H7, and similar numbers have been reported in Canada and Europe. The livestock show no signs of illness and the levels are generally low, making contaminated animals hard to identify. Current prevention methodologies have centered on reducing meat contamination in the slaughterhouse and testing all products for human consumption as they leave.

"At present, there are few therapeutic treatments for victims of this potentially deadly infectious agent except supportive therapy to manage the complications of cellular damage," says Dyen. "Our work focuses on removing O157:H7 from the food chain."


###
This release is a summary of a presentation from the 103rd General Meeting of the American Society for Microbiology, May 18-22, 2003, in Washington, DC. Additional information on these and other presentations at the 103rd ASM General Meeting can be found online at http://www.asm.org/Media/index.asp?bid=17053 or by contacting Jim Sliwa (jsliwa@asmusa.org) in the ASM Office of Communications. The phone number for the General Meeting Press Room is (202) 249-4064 and will be active from 12:00 noon EDT, May 18 until 12:00 noon EDT, May 22.


Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org/

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>