Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemists create unusual lariat RNA, a key intermediate in biological splicing

19.05.2003


The production of lariat RNAs is a key step in the biologically important process of splicing. Because splicing changes the protein that is made from a given gene, a fundamental understanding of splicing is critical for comprehending the connections between genes and proteins. The study of splicing, however, has been very difficult in part because lariat RNAs have been nearly impossible to make artificially.


Chemical reaction catalyzed by a DNA enzyme that creates lariat RNA.


Stylized diagram of a lariat RNA showing the branch site. The various colors represent the different nucleotides A, G, C and U.



Now, chemistry professor Scott K. Silverman and graduate student Yangming Wang at the University of Illinois at Urbana-Champaign have found artificial deoxyribozymes (DNA enzymes) that synthesize branched and lariat RNAs. The researchers report their discovery in a paper that has been accepted for publication in the Journal of the American Chemical Society, and posted on its Web site

"Lariat RNAs are crucial intermediates in the biological splicing of messenger RNAs," Silverman said. "The lariat RNAs synthesized by our new DNA enzymes should help provide a detailed biochemical understanding of RNA splicing."


Lariat RNAs have an unusual connectivity in which a key "branch site" nucleotide is the meeting point between three RNA strands, two of which connect to form a loop, Silverman said. "The resulting molecule, which resembles a lariat, has the same connectivity as introns (intervening regions that don’t perform coding functions) that are removed from messenger RNAs during biological splicing in fungi, eukaryotes, and even some bacteria."

Silverman and Wang used a process called in vitro selection to sample billions of DNA sequences for the desired chemical selectivity. The DNA enzymes the researchers found can catalyze branched RNA formation at rates up to 5 million times faster than the reaction would occur in the absence of the enzyme.

"The ability to make these branches and lariats offers us a new path for the biochemical investigation of RNA splicing," Silverman said. "Errors in making proteins have been linked to certain diseases and birth defects, for example. By incorporating chemical modifications into these key structural intermediates, we can more thoroughly examine the fundamental splicing process."


###
The March of Dimes, National Institutes of Health, Petroleum Research Fund and the University of Illinois funded the work

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu/

More articles from Life Sciences:

nachricht Charge Order and Electron Localization in a Molecule-Based Solid
22.01.2018 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

The world's most powerful acoustic tractor beam could pave the way for levitating humans

22.01.2018 | Power and Electrical Engineering

Siberian scientists learned how to reduce harmful emissions from HPPs

22.01.2018 | Power and Electrical Engineering

Combination of Resistance Genes Offers Better Protection for Wheat against Powdery Mildew

22.01.2018 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>