Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Critical early-defense trigger in plants found

16.05.2003


The gene for an enzyme that is key to natural disease resistance in plants has been discovered by biologists at the Boyce Thompson Institute for Plant Research (BTI) and at Cornell University. The researchers say that by enhancing the activity of the enzyme they might be able to boost natural disease resistance in crop plants without resorting to pesticides or the introduction of non-plant genes.

The research, reported in the latest (May 16) issue of the journal Cell , describes the discovery of the gene that codes for an enzyme (a protein that carries out a chemical reaction) that is activated when a plant senses it is being attacked by a pathogen. When activated, the enzyme produces nitric oxide (NO), a hormone that tells the plant to turn on its defense arsenal.

According to plant pathologist Daniel F. Klessig, lead author of the Cell paper and president of BTI, located on the Cornell campus, the discovery provides a new understanding of the biochemical and genetic pathways in plants that enable them to protect themselves from disease.



"It’s known that the hormone nitric oxide plays an important role in immunity in plants as well as in humans and other animals," says Klessig. "But the enzyme responsible for its production in plants was unknown until now. With this discovery, we may be able to modify plants so that they produce nitric oxide more quickly, or in larger amounts, when they are attacked by a disease-causing pathogen, enabling them to better protect themselves from invaders."

Authors of the Cell paper, "The Pathogen-Inducible Nitric Oxide Synthase (iNOS) in Plants is a Variant of the P Protein of the Glycine Decarboxylase Complex," also include Meena Chandok, a BTI senior research associate; Anders Jimmy Ytterberg, Cornell doctoral candidate in plant biology; and Klaas J. van Wijk, Cornell assistant professor of plant biology.

"This discovery really is a surprise because the plant enzyme looks very different from mammalian nitric oxide-synthesizing enzymes,"said Brian Crane, Cornell assistant professor of chemistry and chemical biology. Crane now is working with Klessig and Chandok to determine the three-dimensional structure of the protein that will lead biologists to understand its chemical mechanism.

The discovery is significant, the researchers note, because NO is a critical early-warning signal to the plant that it needs to activate its immune response. The difficulty inherent in the research, according to Klessig, was that the plant’s NO-producing enzyme has a completely different sequence than enzymes with similar activity found in all animals. The new research suggests, he says, that the chemistry the plant and animal enzymes use to produce NO also is different.

These differences, Klessig says, could provide clues concerning the way the animal enzyme works, which, in turn, could lead to improved treatment of human diseases by enhancing the activity of the enzyme.

"Part of the success of the green revolution depends on the use of chemical-based fungicides and other pesticides to protect crops against microbial pathogens and insects," says Klessig. "An alternative strategy to protect crops utilizes a plant’s own natural defenses. An approach in which plant molecular biologists have overproduced plant proteins with antimicrobial activity, such as PR proteins or defensin, has met with only limited success to date, perhaps because only a small portion of the defense arsenal is involved.

"Our discovery of the enzyme that produces the critical early-defense signal, NO, means that we now may be able to regulate the production of this signal.

The turning up of this signal should lead to the turning on of a large portion of the defense arsenal. The end result could be crop plants that can better ward off disease without the use of potentially harmful fungicides and other pesticides, or the introduction of non-plant genes."

Van Wijk, whose research group identified the protein by tandem mass spectrometry, stresses that without the availability of the very sensitive mass spectrometry instruments and the plant genome information "we would not have been able to find this."

The Boyce Thompson Institute was opened in 1924 and is an independent, not-for-profit plant research organization. BTI funding for the Cell research was provided, in part, by a Plants and Human Health Grant from the Triad Foundation.

David Brand | Cornell News
Further information:
http://bti.cornell.edu
http://www.cell.com
http://www.news.cornell.edu/releases/May03/NewGeneKlessig.html

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>