Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Assumptions about what holds molecular complexes together have been based on faulty measures

16.05.2003


As scientists create molecular complexes to perform increasingly minute operations -- such as molecular level switches or memory devices -- it is critical that the association forces that hold the molecular components together be accurately understood.



But measurements of association constants are often not accurate, according to an article by Virginia Tech Ph.D. student Jason Jones and chemistry professor Harry W. Gibson, published in May 15, 2003 online issue of the Journal of the American Chemical Society ("Ion Pairing and Host-Guest Complexation in Low Dielectrict Constant Solvents," scheduled for print on June 25, 2003).

Designing molecules that switch on and off or that attach to a material to transport it and then release it at some external signal, requires a complexation (or connection) process that is reversible. Fine control of reversible complexation processes requires precise understanding of the attractive forces that hold two or more molecules together in the supramolecular assembly.


Gibson and his students began to take a closer look at how association constants (Ka) are determined in the molecular complexes they were building when Ka measurements did not match those in the literature.

Using a simple host-guest system known as a pseudorotaxane, large cyclic host molecules were allowed to interact with linear guest molecule to create a supramolecular threaded complex. The host and guest are bound by electrostatic forces, primarily hydrogen bonding. Since the guest systems are salts, in low-polarity solvents "The attraction between positive and negative ions means that the salt species are predominantly intimately ion-paired but not entirely," says Gibson.

In Chemistry 101, A+B=C. "If you know how much of each species -- hosts (H) and guests (G) -- you have, then you can predict how much of the complex (C) you will get -- if you also know Ka -- the association constant," says Gibson.

Ka = C divided by (A)(B) where A = the H you started with minus C (H0-C) and B = the G you started with minus C (G0-C). [Ka = C / (H0-C) (G0-C)]

However, that only works if the guest molecules and the complex are ion-paired to the same extent, says Gibson. And that does not happen.

The researchers developed equations for determining Ka when the extents of ion-pairing were different and tested them. "It requires more work and more data," says Gibson. "But in order to make functional materials using supramolecular chemistry, you have to have as high a Ka as possible. Now that we know more about the individual steps and factors involved, we have been able to build better supramolecular arrangements."

Jones has been able to increase Ka 50-fold in recent work(presented to the American Chemical Society in March 2003). An increased understanding of bonding dynamics will allow the development of innovative molecular level materials, such as molecular motors and molecular memory devices.



Contact for more information: Harry W. Gibson, 540-231-5902, hwgibson@vt.edu


PR CONTACT at Virginia Tech: Susan Trulove, 540-231-5646, STrulove@vt.edu

Harry W. Gibson | EurekAlert!
Further information:
http://www.chemistry.vt.edu/chem-dept/gibson/Gibson/gibson.htm
http://www.technews.vt.edu/

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>