Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Assumptions about what holds molecular complexes together have been based on faulty measures

16.05.2003


As scientists create molecular complexes to perform increasingly minute operations -- such as molecular level switches or memory devices -- it is critical that the association forces that hold the molecular components together be accurately understood.



But measurements of association constants are often not accurate, according to an article by Virginia Tech Ph.D. student Jason Jones and chemistry professor Harry W. Gibson, published in May 15, 2003 online issue of the Journal of the American Chemical Society ("Ion Pairing and Host-Guest Complexation in Low Dielectrict Constant Solvents," scheduled for print on June 25, 2003).

Designing molecules that switch on and off or that attach to a material to transport it and then release it at some external signal, requires a complexation (or connection) process that is reversible. Fine control of reversible complexation processes requires precise understanding of the attractive forces that hold two or more molecules together in the supramolecular assembly.


Gibson and his students began to take a closer look at how association constants (Ka) are determined in the molecular complexes they were building when Ka measurements did not match those in the literature.

Using a simple host-guest system known as a pseudorotaxane, large cyclic host molecules were allowed to interact with linear guest molecule to create a supramolecular threaded complex. The host and guest are bound by electrostatic forces, primarily hydrogen bonding. Since the guest systems are salts, in low-polarity solvents "The attraction between positive and negative ions means that the salt species are predominantly intimately ion-paired but not entirely," says Gibson.

In Chemistry 101, A+B=C. "If you know how much of each species -- hosts (H) and guests (G) -- you have, then you can predict how much of the complex (C) you will get -- if you also know Ka -- the association constant," says Gibson.

Ka = C divided by (A)(B) where A = the H you started with minus C (H0-C) and B = the G you started with minus C (G0-C). [Ka = C / (H0-C) (G0-C)]

However, that only works if the guest molecules and the complex are ion-paired to the same extent, says Gibson. And that does not happen.

The researchers developed equations for determining Ka when the extents of ion-pairing were different and tested them. "It requires more work and more data," says Gibson. "But in order to make functional materials using supramolecular chemistry, you have to have as high a Ka as possible. Now that we know more about the individual steps and factors involved, we have been able to build better supramolecular arrangements."

Jones has been able to increase Ka 50-fold in recent work(presented to the American Chemical Society in March 2003). An increased understanding of bonding dynamics will allow the development of innovative molecular level materials, such as molecular motors and molecular memory devices.



Contact for more information: Harry W. Gibson, 540-231-5902, hwgibson@vt.edu


PR CONTACT at Virginia Tech: Susan Trulove, 540-231-5646, STrulove@vt.edu

Harry W. Gibson | EurekAlert!
Further information:
http://www.chemistry.vt.edu/chem-dept/gibson/Gibson/gibson.htm
http://www.technews.vt.edu/

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>