Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fossil Record Accurately Reflects Recent Flowering of Marine Biodiversity

16.05.2003

The apparent increase in marine biodiversity over the past 50 million to 100 million years is real and not just a false reading produced by the inconsistencies of the fossil record, says a team of paleontologists led by the University of Chicago’s David Jablonski. This finding, published in the May 16 issue of the journal Science, may help scientists place the future of global biodiversity in its proper context.

"If you want to understand what’s going to come in the future you need to understand the dynamics that led up to the biodiversity we see now," said Jablonski.

By some measures, up to 50 percent of the increase in marine animal biodiversity during the past 50 million years can be attributed to what paleontologists call "the Pull of the Recent."

This is the idea, posed in 1979 by University of Chicago paleontologist David Raup, that the level of biodiversity is inflated in younger fossil deposits because sampling of the modern world is so much more complete than in the geologic past. But the Pull of the Recent accounts for as little as 5 percent of the biodiversity increase, at least for one well-preserved group.

"The results of this exciting study show how a thorough understanding of deep-time biotas and diversity places modern life into the correct perspective and provides a predictive capability for the future," said H. Richard Lane, director of the National Science Foundation (NSF)’s paleontology program, which funded the research. "These results can be applied to the study of natural processes and climate cycles in deep time, relating that to the modern situation, and using that knowledge to predict the future."

Scientists have long believed that diversity proliferated dramatically after the Paleozoic Era, which ended 250 million years ago, to the late present day. The work of James Valentine of the University of California, Berkeley, and a co-author of the Science article, pointed to a 10-fold increase.

Joining Jablonski and Valentine on the project were Kaustuv Roy, University of California, San Diego, and University of Chicago graduate students Rebecca Price and Philip Anderson.

The team studied bivalves (clams, scallops, oysters and mussels) to address the issue because they are one of the major contributors to marine animal biodiversity. In order to screen out a potential false reading for Cenozoic biodiversity, the team inventoried bivalve diversity in the youngest part of the geologic record. This would allow for assessment of the impact of the living bivalves by ignoring the biodiversity in modern oceans and building a diversity history based only on the fossil occurrences.

"This involved churning through a massive amount of the published paleontological literature of marine bivalves that lived during the last five million years," Jablonski said.

Complicating the task were the nomenclature changes that affected some types of bivalves. A single species might have been classified differently in each of four different papers published during the last 100 years as paleontologists’ understanding of its evolutionary relationships improved, Jablonski said. Once the team members had standardized the classifications, they found that 906 of the 958 types (95 percent) of living bivalves they examined left a fossil record within the past 5 million years, as well as earlier in many cases.

The possibility still existed that rocks deposited 5 million years ago were unusually rich and that they were distorting the fossil record. So the team conducted a second inventory of bivalves that plunged much deeper into the fossil record, back 65 million years ago to the days of the dinosaurs. The paleontologists still were able to recover 87 percent of the types of bivalves that lived through that interval, when some thought the record might be poorer. The high recovery rate supports claims that the lower diversity levels observed from this time are genuine and not artificially depressed by sampling or preservation.

"Skeptics would say, well, that’s just bivalves. Maybe they’re somehow unique," Jablonski said. But a similar recovery figure, 89 percent, applies to sea urchins, which researchers at London’s Natural History Museum inventoried for the same period. "We’ve been talking about putting together a consortium of people to do exactly this kind of study with essentially all the major groups that make up the biodiversity increase," Jablonski said.

"It’d be a real boon for the field if we can get this under way, because it will simultaneously tackle the sampling question and put a huge chunk of the fossil record into a standardized evolutionary framework."

Cheryl Dybas | NSF
Further information:
http://www.nsf.gov
http://www.nsf.gov/home/news.html

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>