Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fossil Record Accurately Reflects Recent Flowering of Marine Biodiversity


The apparent increase in marine biodiversity over the past 50 million to 100 million years is real and not just a false reading produced by the inconsistencies of the fossil record, says a team of paleontologists led by the University of Chicago’s David Jablonski. This finding, published in the May 16 issue of the journal Science, may help scientists place the future of global biodiversity in its proper context.

"If you want to understand what’s going to come in the future you need to understand the dynamics that led up to the biodiversity we see now," said Jablonski.

By some measures, up to 50 percent of the increase in marine animal biodiversity during the past 50 million years can be attributed to what paleontologists call "the Pull of the Recent."

This is the idea, posed in 1979 by University of Chicago paleontologist David Raup, that the level of biodiversity is inflated in younger fossil deposits because sampling of the modern world is so much more complete than in the geologic past. But the Pull of the Recent accounts for as little as 5 percent of the biodiversity increase, at least for one well-preserved group.

"The results of this exciting study show how a thorough understanding of deep-time biotas and diversity places modern life into the correct perspective and provides a predictive capability for the future," said H. Richard Lane, director of the National Science Foundation (NSF)’s paleontology program, which funded the research. "These results can be applied to the study of natural processes and climate cycles in deep time, relating that to the modern situation, and using that knowledge to predict the future."

Scientists have long believed that diversity proliferated dramatically after the Paleozoic Era, which ended 250 million years ago, to the late present day. The work of James Valentine of the University of California, Berkeley, and a co-author of the Science article, pointed to a 10-fold increase.

Joining Jablonski and Valentine on the project were Kaustuv Roy, University of California, San Diego, and University of Chicago graduate students Rebecca Price and Philip Anderson.

The team studied bivalves (clams, scallops, oysters and mussels) to address the issue because they are one of the major contributors to marine animal biodiversity. In order to screen out a potential false reading for Cenozoic biodiversity, the team inventoried bivalve diversity in the youngest part of the geologic record. This would allow for assessment of the impact of the living bivalves by ignoring the biodiversity in modern oceans and building a diversity history based only on the fossil occurrences.

"This involved churning through a massive amount of the published paleontological literature of marine bivalves that lived during the last five million years," Jablonski said.

Complicating the task were the nomenclature changes that affected some types of bivalves. A single species might have been classified differently in each of four different papers published during the last 100 years as paleontologists’ understanding of its evolutionary relationships improved, Jablonski said. Once the team members had standardized the classifications, they found that 906 of the 958 types (95 percent) of living bivalves they examined left a fossil record within the past 5 million years, as well as earlier in many cases.

The possibility still existed that rocks deposited 5 million years ago were unusually rich and that they were distorting the fossil record. So the team conducted a second inventory of bivalves that plunged much deeper into the fossil record, back 65 million years ago to the days of the dinosaurs. The paleontologists still were able to recover 87 percent of the types of bivalves that lived through that interval, when some thought the record might be poorer. The high recovery rate supports claims that the lower diversity levels observed from this time are genuine and not artificially depressed by sampling or preservation.

"Skeptics would say, well, that’s just bivalves. Maybe they’re somehow unique," Jablonski said. But a similar recovery figure, 89 percent, applies to sea urchins, which researchers at London’s Natural History Museum inventoried for the same period. "We’ve been talking about putting together a consortium of people to do exactly this kind of study with essentially all the major groups that make up the biodiversity increase," Jablonski said.

"It’d be a real boon for the field if we can get this under way, because it will simultaneously tackle the sampling question and put a huge chunk of the fossil record into a standardized evolutionary framework."

Cheryl Dybas | NSF
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>