Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Excellent Underwater Vision Examined by Scientists from Lund

15.05.2003


We humans are poorly adapted for underwater vision. However, the Moken peoples of south-east Asia manage to collect shells, clams and sea cucumbers using no visual aids when diving to a depth of 3 or 4 metres. Scientists from Lund University in Sweden have now measured the visual acuity of these children and have found that their ability to see well underwater is not a myth: their acuity in this environment is indeed superior to that of European children. The scientists have also found an explanation for this phenomenon.



The results are presented in the new issue of the prestigious scientific journal Current Biology. Anna Gislén and Marie Dacke from the Department of Cell and Organism Biology have travelled several times to the Surin Islands (Thailand) where the Moken tribe live. These people are the so-called sea-gypsies, who for thousands of years have lived on their boats and collected food from the ocean. Some of them have settled down in houses built on three metre high stilts by the shore. At high tide the Moken can dive directly into the water from their houses.

Gislén and Dacke have performed a series of visual tests on the Moken children. Using an experimental apparatus placed under the surface, the children viewed striped patterns that were presented either horizontally or vertically. By using thinner and thinner stripes they could determine the resolution limit of the children.


”Underwater, Moken children can resolve stripes that are twice as fine as the finest seen by European children”, says Anna Gislén. ”We asked ourselves if this was due to a biological, possibly genetic, difference or if it was due to learning. For instance, we examined their eyes in detail, but could find no evidence that their corneas had a different curvature than the corneas of European children. Neither was there any evidence that the Moken children had better acuity on land.”

Was there something that these children did underwater that gave them better acuity? Under normal circumstances the pupil opens underwater to let in more light. But the pupils of Moken children constrict under water. The effect is the same as choosing a smaller aperture in a camera: focal depth is increased and resolution is improved. The Moken children also accommodate maximally, that is, the muscles controlling the lens are constricted and the lens changes shape, thus increasing the refraction of light.

”We are currently doing a follow-up study on Swedish children. Even though the study is not yet finished, it does seem that children can learn to adapt their eyes for better underwater vision”, says Marie Dacke.

Göran Frankel | alfa
Further information:
http://www.lu.se

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>