Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Excellent Underwater Vision Examined by Scientists from Lund

15.05.2003


We humans are poorly adapted for underwater vision. However, the Moken peoples of south-east Asia manage to collect shells, clams and sea cucumbers using no visual aids when diving to a depth of 3 or 4 metres. Scientists from Lund University in Sweden have now measured the visual acuity of these children and have found that their ability to see well underwater is not a myth: their acuity in this environment is indeed superior to that of European children. The scientists have also found an explanation for this phenomenon.



The results are presented in the new issue of the prestigious scientific journal Current Biology. Anna Gislén and Marie Dacke from the Department of Cell and Organism Biology have travelled several times to the Surin Islands (Thailand) where the Moken tribe live. These people are the so-called sea-gypsies, who for thousands of years have lived on their boats and collected food from the ocean. Some of them have settled down in houses built on three metre high stilts by the shore. At high tide the Moken can dive directly into the water from their houses.

Gislén and Dacke have performed a series of visual tests on the Moken children. Using an experimental apparatus placed under the surface, the children viewed striped patterns that were presented either horizontally or vertically. By using thinner and thinner stripes they could determine the resolution limit of the children.


”Underwater, Moken children can resolve stripes that are twice as fine as the finest seen by European children”, says Anna Gislén. ”We asked ourselves if this was due to a biological, possibly genetic, difference or if it was due to learning. For instance, we examined their eyes in detail, but could find no evidence that their corneas had a different curvature than the corneas of European children. Neither was there any evidence that the Moken children had better acuity on land.”

Was there something that these children did underwater that gave them better acuity? Under normal circumstances the pupil opens underwater to let in more light. But the pupils of Moken children constrict under water. The effect is the same as choosing a smaller aperture in a camera: focal depth is increased and resolution is improved. The Moken children also accommodate maximally, that is, the muscles controlling the lens are constricted and the lens changes shape, thus increasing the refraction of light.

”We are currently doing a follow-up study on Swedish children. Even though the study is not yet finished, it does seem that children can learn to adapt their eyes for better underwater vision”, says Marie Dacke.

Göran Frankel | alfa
Further information:
http://www.lu.se

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>