Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gold nanoparticles and catalytic DNA produce colormetric lead sensor

15.05.2003


Detecting the presence of hazardous lead paint could become as simple as pressing a piece of paper against a wall and noting a color change.



Scientists at the University of Illinois at Urbana-Champaign have developed a highly sensitive and selective biosensor that functions in much the same fashion as a strip of litmus paper. The researchers report their discovery in a paper that has been accepted for publication in the Journal of the American Chemical Society, and posted on its Web site. The colorimetric sensor is based upon DNA-gold nanoparticle chemistry, and could be used for sensing a variety of environmental contaminants.

Using gold nanoparticles laced with DNA, Illinois chemistry professor Yi Lu and graduate student Juewen Liu are able to hybridize the nanoparticles into aggregate clusters that have a characteristic blue color. In the presence of a specific metal ion, the catalytic DNA will break off individual gold nanoparticles, resulting in a dramatic color shift to red. The intensity of the color depends upon the initial concentration of contaminant metal ions.


By applying the DNA-gold nanoparticle solution to a substrate, the researchers can create a biosensor that functions in the same manner as litmus paper. "These simple colorimetric sensors eliminate the need for additional instrumentation, and are well suited for on-site, real-time detection and quantification," Lu said.

To obtain the necessary catalytic DNA for their biosensors, Lu and Liu use a combinatorial approach called in vitro selection. Simple and cost-effective, the selection process can sample a very large pool of DNA (up to 1,000 trillion molecules), amplify the desired sequence by the polymerase chain reaction and introduce mutations to improve performance.

While most DNA is double stranded, the catalytic DNA Lu and Liu use has a single strand that can wrap around like a protein. In that single strand, the researchers fashion a specific binding site -- a kind of pocket that can only accommodate the metal ion of choice.

"In addition to lead, the selection process can be customized to select catalytic DNA that would be active for other metal ions, such as mercury, cadmium and zinc," Lu said.

The dynamic response of the sensor solution can be tuned over a wide range by introducing inactive catalytic DNA into the mix, Lu said. Incorporating more of the inactive DNA will shift the sensor’s sensitivity to higher contaminant concentrations without saturation. By using various combinations of active and inactive catalytic DNA, the sensor could be packaged as a colorimetric array to detect different contaminant concentrations.

"There are many old houses around the world that still contain leaded paint," Lu said. "According to the U.S. Environmental Protection Agency, leaded paint test kits that are currently available have shown high rates of both false positive and false negative results when compared to laboratory results. Our catalytic DNA-gold nanoparticle sensor can overcome these shortcomings."

Lu is also working with colleagues at the National Science Foundation’s Nanoscale Science and Engineering Center for Directed Assembly of Nanostructures (a partnership among Illinois, the Rensselaer Polytechnic Institute and the Los Alamos National Laboratory) to further develop the biosensor technology. For example, Lu is working with Illinois collaborators Paul Braun and Gerard Wong to produce nanoparticles from different materials.

"Our ultimate goal is to develop a microchip array with different color schemes for simultaneously detecting many different metal ions," Lu said.

Funding was provided by the U.S. Department of Energy and the National Science Foundation.

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu/

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>