Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gold nanoparticles and catalytic DNA produce colormetric lead sensor

15.05.2003


Detecting the presence of hazardous lead paint could become as simple as pressing a piece of paper against a wall and noting a color change.



Scientists at the University of Illinois at Urbana-Champaign have developed a highly sensitive and selective biosensor that functions in much the same fashion as a strip of litmus paper. The researchers report their discovery in a paper that has been accepted for publication in the Journal of the American Chemical Society, and posted on its Web site. The colorimetric sensor is based upon DNA-gold nanoparticle chemistry, and could be used for sensing a variety of environmental contaminants.

Using gold nanoparticles laced with DNA, Illinois chemistry professor Yi Lu and graduate student Juewen Liu are able to hybridize the nanoparticles into aggregate clusters that have a characteristic blue color. In the presence of a specific metal ion, the catalytic DNA will break off individual gold nanoparticles, resulting in a dramatic color shift to red. The intensity of the color depends upon the initial concentration of contaminant metal ions.


By applying the DNA-gold nanoparticle solution to a substrate, the researchers can create a biosensor that functions in the same manner as litmus paper. "These simple colorimetric sensors eliminate the need for additional instrumentation, and are well suited for on-site, real-time detection and quantification," Lu said.

To obtain the necessary catalytic DNA for their biosensors, Lu and Liu use a combinatorial approach called in vitro selection. Simple and cost-effective, the selection process can sample a very large pool of DNA (up to 1,000 trillion molecules), amplify the desired sequence by the polymerase chain reaction and introduce mutations to improve performance.

While most DNA is double stranded, the catalytic DNA Lu and Liu use has a single strand that can wrap around like a protein. In that single strand, the researchers fashion a specific binding site -- a kind of pocket that can only accommodate the metal ion of choice.

"In addition to lead, the selection process can be customized to select catalytic DNA that would be active for other metal ions, such as mercury, cadmium and zinc," Lu said.

The dynamic response of the sensor solution can be tuned over a wide range by introducing inactive catalytic DNA into the mix, Lu said. Incorporating more of the inactive DNA will shift the sensor’s sensitivity to higher contaminant concentrations without saturation. By using various combinations of active and inactive catalytic DNA, the sensor could be packaged as a colorimetric array to detect different contaminant concentrations.

"There are many old houses around the world that still contain leaded paint," Lu said. "According to the U.S. Environmental Protection Agency, leaded paint test kits that are currently available have shown high rates of both false positive and false negative results when compared to laboratory results. Our catalytic DNA-gold nanoparticle sensor can overcome these shortcomings."

Lu is also working with colleagues at the National Science Foundation’s Nanoscale Science and Engineering Center for Directed Assembly of Nanostructures (a partnership among Illinois, the Rensselaer Polytechnic Institute and the Los Alamos National Laboratory) to further develop the biosensor technology. For example, Lu is working with Illinois collaborators Paul Braun and Gerard Wong to produce nanoparticles from different materials.

"Our ultimate goal is to develop a microchip array with different color schemes for simultaneously detecting many different metal ions," Lu said.

Funding was provided by the U.S. Department of Energy and the National Science Foundation.

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu/

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>