Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

In potentially important discovery, scientists find two forms of genetic material chromatin

14.05.2003


Biologists have discovered what appear to be fundamental differences in the physical properties of the genetic material known as chromatin. Chromatin packages DNA into cells, and the scientists found the differences between chromatin that packages genes and the chromatin that packages DNA with regulatory or unknown functions.



The variation represents a previously unrecognized level of genomic organization and complexity, the scientists report, one that may exist in all cells with nuclei.

Made in yeast, the discovery offers broad potential uses, said Dr. Jason D. Lieb, a University of North Carolina at Chapel Hill biologist and a report author.


"For example, in pathology laboratories, differences in chromatin shape and structure in mammalian cells are routinely determined by staining tissues and observing them under a microscope," said Lieb, also a Carolina Center for the Genome Sciences researcher. "This is an important assay used to identify specific cell types and malignancies. It is possible that a detailed genomic view of these variations, provided by the method we describe in our paper, could be used to diagnose and sub-type cancer and other diseases."

It also could be an important tool for assigning functions to subsections of the genome, particularly for finding active genes, which remains a difficult problem, he said.

The report will appear online this week and in the May 27 issue of the Proceedings of the National Academy of Sciences. Other authors, all at Stanford University, are Drs. Peter L. Nagy and Michael L. Cleary of pathology and Dr. Patrick O. Brown of biochemistry.

"If the DNA from a single human chromosome were stretched and measured end-to-end, it would extend to over half an inch in length," Lieb said. "Our cells are much, much smaller than that, of course, and in order to fit inside the cell’s nucleus, which is even smaller, DNA must be compacted about 1,000-fold relative to its stretched-out length. This compaction is achieved by coiling and folding the DNA around proteins."

Together, he said, DNA and proteins are called chromatin, and it is chromatin that one sees in the familiar microscopic images of chromosomes. The basic unit of chromatin is called the nucleosome, which is like a barrel, and DNA is wrapped around that barrel 1.7 times. Nucleosomes are made up of proteins called histones, which come in many different "flavors."

"They can be modified by chemical processes known as methylation, acetylation and phosphorylation at different positions," Lieb said. "It has become increasingly clear that specific combinations of histone modifications are linked to underlying gene activity."

Based on its emerging importance, the information stored in histones and their modifications has been dubbed the "histone code," he said.

Packaging DNA serves not only to compact it but also has a key role in determining if the genes are turned on or off, the scientist said. Packaging DNA into chromatin acts as a gatekeeper, determining which parts of the genome are accessible to regulatory proteins and which parts are off limits. Defects in the proteins that organize DNA lead to embryonic development defects due to their influence on underlying gene activity.

That the DNA sequence in the genome is organized into two broad classes, genes and non-protein coding regions -- sometimes called "junk DNA" -- has been known for a long time, Lieb said. Much less is known about how chromatin is organized along the underlying DNA. "We initially set out to investigate the global distribution of a particular ’flavor’ of one histone in yeast," he said. "In the procedure, we crosslinked, or fixed, the yeast with formaldehyde, and then later were to reverse those crosslinks with heat. We inadvertently omitted the reversal, a key step in the technique, however. "We found then that by using formaldehyde-crosslinked chromatin in a biochemical procedure normally used to separate all proteins from all DNA, we could instead separate yeast chromatin into two specific and functionally distinct parts."

The most striking aspect of the result, he said, is that local variation in chromatin composition and structure is extremely diverse and complex, yet the new studies reveal what appears to be a global pattern that systematically and simply demarcates sequences in a way that reflects their assigned role as genes or non-genes.

"This method, or a similar method, may be applicable to other organisms," Lieb said "Our approach has potential use as a tool for describing changes in chromatin structure that accompany different genetic, environmental, and disease states."


Note: Lieb can be reached at (919) 843-3228 or jlieb@bio.unc.edu
Contact: David Williamson (919) 962-8596


David Williamson | EurekAlert!
Further information:
http://www.unc.edu/

More articles from Life Sciences:

nachricht New technique unveils 'matrix' inside tissues and tumors
29.06.2017 | University of Copenhagen The Faculty of Health and Medical Sciences

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>