Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Clue to prion formation found, offers step toward treating puzzling diseases


Prions—their existence is intriguing and their links to disease are unsettling. These unconventional infectious agents are involved in mad cow disease and other fatal brain illnesses in humans and animals, rattling prior assumptions about the spread of infections.

Dartmouth Medical School biochemists studying the mysteries of these prion particles have discovered a novel step in their formation. Their results, reported in a recent issue of Biochemistry could help provide a new approach for therapy against prion diseases. The team, headed by Dr. Surachai Supattapone, assistant professor of biochemistry and of medicine, includes Ralf Lucassen and Koren Nishina.

The cause of certain neurodegenerative diseases has long stymied scientists. The variant Creutzfeldt-Jakob disease in humans -- which is linked to bovine spongiform encephalopathy or mad cow disease -- as well as scrapie in sheep and chronic wasting disease in deer and elk are transmissible.

Yet the infectious agent is not a parasite, fungus, bacterium or virus. Instead, it seems to be a prion, which is a protein, but an abnormally shaped one. A normal brain protein called PrPC misfolds into the prion protein called PrPSc. Until prions were discovered, proteins were not considered agents of infection.

Still unknown is how PrPC turns into PrPSc, which is characterized biochemically by being resistant to enyzme digestion. The researchers created a system to study the conversion into PrPSc in a test tube.

“We found that we could inhibit this conversion with compounds that block free sulfhydryl groups,” said Supattapone. “This is the first discovery that formation of PrPSc requires a reactive chemical group. It is a clue that there may be a cofactor containing the free sulfhydryl group, such as an enzyme that helps to catalyze the process of forming PrPSc from PrPC. Moreover, it may be a first step of a logical approach to find a therapeutic strategy against prion disease based on specifically inhibiting a catalytic cofactor.”

Andy Nordhoff | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>