Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clue to prion formation found, offers step toward treating puzzling diseases

09.05.2003


Prions—their existence is intriguing and their links to disease are unsettling. These unconventional infectious agents are involved in mad cow disease and other fatal brain illnesses in humans and animals, rattling prior assumptions about the spread of infections.

Dartmouth Medical School biochemists studying the mysteries of these prion particles have discovered a novel step in their formation. Their results, reported in a recent issue of Biochemistry could help provide a new approach for therapy against prion diseases. The team, headed by Dr. Surachai Supattapone, assistant professor of biochemistry and of medicine, includes Ralf Lucassen and Koren Nishina.

The cause of certain neurodegenerative diseases has long stymied scientists. The variant Creutzfeldt-Jakob disease in humans -- which is linked to bovine spongiform encephalopathy or mad cow disease -- as well as scrapie in sheep and chronic wasting disease in deer and elk are transmissible.



Yet the infectious agent is not a parasite, fungus, bacterium or virus. Instead, it seems to be a prion, which is a protein, but an abnormally shaped one. A normal brain protein called PrPC misfolds into the prion protein called PrPSc. Until prions were discovered, proteins were not considered agents of infection.

Still unknown is how PrPC turns into PrPSc, which is characterized biochemically by being resistant to enyzme digestion. The researchers created a system to study the conversion into PrPSc in a test tube.

“We found that we could inhibit this conversion with compounds that block free sulfhydryl groups,” said Supattapone. “This is the first discovery that formation of PrPSc requires a reactive chemical group. It is a clue that there may be a cofactor containing the free sulfhydryl group, such as an enzyme that helps to catalyze the process of forming PrPSc from PrPC. Moreover, it may be a first step of a logical approach to find a therapeutic strategy against prion disease based on specifically inhibiting a catalytic cofactor.”

Andy Nordhoff | EurekAlert!
Further information:
http://www.dartmouth.edu/

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>