Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Protein folding hits a speed limit

08.05.2003


To carry out their functions, proteins must first fold into particular structures. How rapidly this process can occur has been both a source of debate and a roadblock to comparing protein folding theory and experiment.



Now, researchers at the University of Illinois at Urbana-Champaign have observed a protein that hit a speed limit when folding into its native state.

"Some of our proteins were folding as fast as they possibly could -- in only one or two microseconds," said Martin Gruebele, an Illinois professor of chemistry, physics and biophysics. A paper describing the work is to appear in the May 8 issue of the journal Nature.


To study protein folding at the speed limit, Gruebele and graduate student Wei Yuan Yang took a small protein and, by replacing some of the amino acids with others that improved the molecular interactions, made it fold faster. By the time they finished souping up their protein, it was folding nearly 1,000 times faster than normal.

The researchers then used a fast temperature-jump procedure to measure folding times with nanosecond resolution. To initiate the folding sequence, a solution of unfolded proteins was heated rapidly by a single pulse from an infrared laser. As the proteins twisted into their characteristic shapes, pulses from an ultraviolet laser caused some of the amino acids to fluoresce, revealing a time-sequence of folding events.

"Because a protein can follow more than one pathway to its native state, a variety of folding times will result," Gruebele said. "Plotting these times usually yields an exponential decay rate, because we are averaging over lots of molecules at once."

But, in addition to the normal exponential decay rate -- which did not exceed 10 microseconds -- Gruebele and Yang detected a much faster behavior that occurred on shorter time scales below one or two microseconds.

"That’s the speed limit," Gruebele said. "That’s the speed at which segments of the protein can physically change their positions -- the speed at which the protein would fold if it took the shortest possible path and made the least possible mistakes."

Before the experiment, time estimates ranged from as little as 10 nanoseconds to as long as 100 microseconds, Gruebele said. The right answer lay in the middle of that range.

"Of course, different proteins will have different speed limits," Gruebele said. "Longer molecules have to move around more to fold, and therefore have slower speed limits."

By modifying their protein to fold extremely fast over a reduced energy barrier, the researchers moved from timing macroscopic kinetics of protein folding over an energy barrier to timing the movement of the protein’s polymer chain. This molecular time scale is also where transition state theory breaks down.

"Because we can measure both the molecular time scale and the activated kinetics normally associated with transition state theory in one experiment, we can determine the activation energy on an absolute scale," Gruebele said. "This allows us to directly compare experimental and computational folding rates, and therefore calibrate the theory."


The Camille and Henry Dreyfus Foundation funded the work.

James E. Kloeppel | EurekAlert!
Further information:
http://www.uiuc.edu/

More articles from Life Sciences:

nachricht Desert ants cannot be fooled
23.11.2017 | Max-Planck-Institut für chemische Ökologie

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Water cooling for the Earth's crust

23.11.2017 | Earth Sciences

Nano-watch has steady hands

23.11.2017 | Physics and Astronomy

Batteries with better performance and improved safety

23.11.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>