Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dartmouth researchers find two circadian clocks in the same plant tissue

08.05.2003


Dartmouth researchers have found evidence of two circadian clocks working within the same tissue of the plant Arabidopsis thaliana, a flowering plant often used in genetic studies. Their results suggest that plants can integrate information from at least two environmental signals, light and temperature, which is important in order to respond to seasonal changes.



The study, published this week, appears in the online edition of the Proceedings of the National Academy of Sciences.

"Having two clocks with different sensitivities to light and to temperature is a better way to ensure that both signals of environmental input are fully understood by the plant," says C. Robertson McClung, professor of biological sciences and an author on the paper. "The plant can then process the data and make decisions about flowering, which is a very critical decision. Arabidopsis flowers in response to the lengthening days of spring, but if it were to flower too soon and there is a nasty frost, the blossoms will die. Early spring is cool, so it makes sense for a plant to clue in to more than one environmental signal."


The researchers, which included McClung, Todd Michael, a former graduate student who is now a postdoctoral fellow at the Salk Institute in San Diego, and Patrice Salomé, a graduate student, followed rhythms in two kinds of genes – one kind that encodes for photosynthesis and another not involved in photosynthesis. The genes in this study are both found in the mesophyll, the spongy inner layer of tissue in leaves.

To measure gene expression, McClung and his students manipulated the clock-controlled genes they were studying and put them in control of luciferase, the enzyme that makes fireflies glow, and then introduced that new gene into Arabidopsis. Each plant in the study had only one altered, light-making gene. When that gene was stimulated, light production was captured by a very sensitive camera. McClung and his team used this method to test how Arabidopsis responded to conflicting signals, such as a cycle of cool days and warm nights.

"We found if we gave them warm nights and cool days, the photosynthetic gene ignored the temperature signal and behaved as if it was only seeing the light signal, which makes sense because photosynthesis absolutely depends on daylight," says McClung. "But the other gene ignored the light signal and responded to the temperature signal. That kind of surprised us."

McClung and his students continued the study by examining how the circadian clocks were reset by different stimuli. For example, people respond to a pulse of light prior to dawn by readjusting their internal clocks a few hours ahead. The same pulse of light administered after dusk delays the clock. The researchers found that the non-photosynthetic gene, which favored temperature signals, showed an exaggerated response to pulses of cold air relative to the photosynthetic gene that responded more to light signals.

"This could only occur if the two genes were responding to two different clocks," says McClung. "Since both the genes are expressed in the mesophyll, it’s clear that both clocks are operating in that tissue. This is exciting because this is the first good example of two clocks operating within a single tissue in any multicellular organism. We’re not quite at the point where we can find out if there are two clocks operating in a single cell, but that’s our goal."


This research is supported by the National Science Foundation.

Sue Knapp | EurekAlert!
Further information:
http://www.dartmouth.edu/

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>