Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dartmouth researchers find two circadian clocks in the same plant tissue

08.05.2003


Dartmouth researchers have found evidence of two circadian clocks working within the same tissue of the plant Arabidopsis thaliana, a flowering plant often used in genetic studies. Their results suggest that plants can integrate information from at least two environmental signals, light and temperature, which is important in order to respond to seasonal changes.



The study, published this week, appears in the online edition of the Proceedings of the National Academy of Sciences.

"Having two clocks with different sensitivities to light and to temperature is a better way to ensure that both signals of environmental input are fully understood by the plant," says C. Robertson McClung, professor of biological sciences and an author on the paper. "The plant can then process the data and make decisions about flowering, which is a very critical decision. Arabidopsis flowers in response to the lengthening days of spring, but if it were to flower too soon and there is a nasty frost, the blossoms will die. Early spring is cool, so it makes sense for a plant to clue in to more than one environmental signal."


The researchers, which included McClung, Todd Michael, a former graduate student who is now a postdoctoral fellow at the Salk Institute in San Diego, and Patrice Salomé, a graduate student, followed rhythms in two kinds of genes – one kind that encodes for photosynthesis and another not involved in photosynthesis. The genes in this study are both found in the mesophyll, the spongy inner layer of tissue in leaves.

To measure gene expression, McClung and his students manipulated the clock-controlled genes they were studying and put them in control of luciferase, the enzyme that makes fireflies glow, and then introduced that new gene into Arabidopsis. Each plant in the study had only one altered, light-making gene. When that gene was stimulated, light production was captured by a very sensitive camera. McClung and his team used this method to test how Arabidopsis responded to conflicting signals, such as a cycle of cool days and warm nights.

"We found if we gave them warm nights and cool days, the photosynthetic gene ignored the temperature signal and behaved as if it was only seeing the light signal, which makes sense because photosynthesis absolutely depends on daylight," says McClung. "But the other gene ignored the light signal and responded to the temperature signal. That kind of surprised us."

McClung and his students continued the study by examining how the circadian clocks were reset by different stimuli. For example, people respond to a pulse of light prior to dawn by readjusting their internal clocks a few hours ahead. The same pulse of light administered after dusk delays the clock. The researchers found that the non-photosynthetic gene, which favored temperature signals, showed an exaggerated response to pulses of cold air relative to the photosynthetic gene that responded more to light signals.

"This could only occur if the two genes were responding to two different clocks," says McClung. "Since both the genes are expressed in the mesophyll, it’s clear that both clocks are operating in that tissue. This is exciting because this is the first good example of two clocks operating within a single tissue in any multicellular organism. We’re not quite at the point where we can find out if there are two clocks operating in a single cell, but that’s our goal."


This research is supported by the National Science Foundation.

Sue Knapp | EurekAlert!
Further information:
http://www.dartmouth.edu/

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>