Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research casts doubt on controversial scientific theory

07.05.2003


Scientists at the University of Sheffield have cast doubt on the validity of the controversial theory of biological cold fusion, the principle sometimes used to lend credence to the practice of selling silicon tablets to strengthen bones, on the assumption that the body will turn the silicon into calcium.



Biological cold fusion, also known as the ‘Kervran effect’, is the principle that living organisms can act as alchemists and turn one element into another. The French Scientist, Louis C. Kervran claimed that he had proven the existence of cold fusion by feeding hens with a calcium deficient diet and observing that they still laid eggs with the usual calcium rich shells. He argued that they did this by changing silicon into calcium.

In a paper published in the Spring 2003 edition of The Journal of Scientific Exploration, Dr. Milton Wainwright, of the Molecular Biology and Biotechnology Department at the University of Sheffield casts serious doubts on one of the alleged proofs of the Kervran Effect . He describes how he and his team used the common mould, Aspergillus niger, to attempt to turn manganese into iron. This was another example cited in Kervran’s work.


The team subjected the fungus and the metal to a variety of different conditions and monitored it using highly sensitive equipment, but were unable to show that such a change occurs.

Dr Wainwright says, “It is important that controversial areas of science are subjected to rigorous scrutiny. It’s difficult for science to categorically prove that something doesn’t happen, but our work, coupled with the fact that biological cold fusion appears to be theoretically impossible, suggests that the phenomenon is non-existent.”

Lorna Branton | alfa
Further information:
http://www.shef.ac.uk

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>