Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study discovers key to baby-like skin

07.05.2003


For nine months before birth, infants soak in a watery, urine-filled environment. Just hours after birth, however, they have near-perfect skin. How is it that nature enables infants to develop ideal skin in such seemingly unsuitable surroundings?



A new study by researchers at the Skin Sciences Institute of Cincinnati Children’s Hospital Medical Center shows that the answer may be vernix -- the white, cheesy substance that coats infants for weeks before they are born, then is wiped off and discarded immediately after birth. If they’re right, the healthcare implications for newborns and adults could be remarkable.

The study, to be presented May 6 at the annual meeting of the Pediatric Academic Societies in Seattle, shows that newborn skin with vernix left intact “is more hydrated, less scaly, and undergoes a more rapid decrease in pH than with vernix removed,” says Marty Visscher, PhD, executive director of the Skin Sciences Institute and the study’s main author. “These beneficial effects of vernix suggest that it should be left intact at birth.”


Vernix is a complex mixture of lipids (fats), proteins and water. Babies born at 32 to 33 weeks are covered with the material. Those who are born full term have already lost a good portion of it. The researchers studied full-term infants, half of whom had vernix wiped off and half left intact on the surface of the skin. Skin hydration, moisture accumulation rate, skin pH and visual dryness were measured at one, four and 24 hours after birth.

Skin Sciences Institute researchers have been studying vernix for several years and found that it is not only a moisturizer but also a wound healer, cleanser, anti-infective and antioxidant. Cincinnati Children’s has obtained four patents on vernix technology and hopes to formulate a synthetic equivalent that could be used in a variety of ways: as a film on products ranging from diapers to wound dressings; as a replacement for vernix in low-birthweight, premature infants who are born before vernix develops at about 27 weeks; as a cream or lotion for topical needs; and as a delivery system for other medications.

“We view the production of vernix as analogous to infant formula as a substitute for milk,” says Dr. Visscher. “Nature has figured out how to make it. Long term, we hope to be able to mass produce a synthetic equivalent. There is nothing out there now to take care of these preterm babies, and the list of other applications for vernix is endless.”

The Skin Sciences Institute views infant skin as ideal skin and focuses on the skin as a primary care interface – a biological spacesuit that separates outer from inner space. “Skin is the largest organ in the body, yet it’s often treated as insignificant,” says Stephen Hoath, MD, a neonatologist, medical director of the Skin Sciences Institute and co-author of the study. “You can’t deliver medical care in the home or hospital without paying attention to this interface, and it has a disproportionate impact on patient satisfaction. People assume you can transplant a liver, but if you can’t pull leads off without hurting them, you’re not providing good care.”


The Skin Sciences Institute has established collaborative relationships with major companies involved in skin care as well as skin barrier structure and function, including the Procter & Gamble Co., the Andrew Jergens Company, Kao Corporation, GOJO Industries, Coloplast Corporation, Kenabo, Becton Dickinson, Vyteris, NOVA Technology Corporation, 3M, and W. L. Gore Industries.

Jim Feuer | EurekAlert!
Further information:
http://www.cincinnatichildrens.org/

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>