Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study discovers key to baby-like skin

07.05.2003


For nine months before birth, infants soak in a watery, urine-filled environment. Just hours after birth, however, they have near-perfect skin. How is it that nature enables infants to develop ideal skin in such seemingly unsuitable surroundings?



A new study by researchers at the Skin Sciences Institute of Cincinnati Children’s Hospital Medical Center shows that the answer may be vernix -- the white, cheesy substance that coats infants for weeks before they are born, then is wiped off and discarded immediately after birth. If they’re right, the healthcare implications for newborns and adults could be remarkable.

The study, to be presented May 6 at the annual meeting of the Pediatric Academic Societies in Seattle, shows that newborn skin with vernix left intact “is more hydrated, less scaly, and undergoes a more rapid decrease in pH than with vernix removed,” says Marty Visscher, PhD, executive director of the Skin Sciences Institute and the study’s main author. “These beneficial effects of vernix suggest that it should be left intact at birth.”


Vernix is a complex mixture of lipids (fats), proteins and water. Babies born at 32 to 33 weeks are covered with the material. Those who are born full term have already lost a good portion of it. The researchers studied full-term infants, half of whom had vernix wiped off and half left intact on the surface of the skin. Skin hydration, moisture accumulation rate, skin pH and visual dryness were measured at one, four and 24 hours after birth.

Skin Sciences Institute researchers have been studying vernix for several years and found that it is not only a moisturizer but also a wound healer, cleanser, anti-infective and antioxidant. Cincinnati Children’s has obtained four patents on vernix technology and hopes to formulate a synthetic equivalent that could be used in a variety of ways: as a film on products ranging from diapers to wound dressings; as a replacement for vernix in low-birthweight, premature infants who are born before vernix develops at about 27 weeks; as a cream or lotion for topical needs; and as a delivery system for other medications.

“We view the production of vernix as analogous to infant formula as a substitute for milk,” says Dr. Visscher. “Nature has figured out how to make it. Long term, we hope to be able to mass produce a synthetic equivalent. There is nothing out there now to take care of these preterm babies, and the list of other applications for vernix is endless.”

The Skin Sciences Institute views infant skin as ideal skin and focuses on the skin as a primary care interface – a biological spacesuit that separates outer from inner space. “Skin is the largest organ in the body, yet it’s often treated as insignificant,” says Stephen Hoath, MD, a neonatologist, medical director of the Skin Sciences Institute and co-author of the study. “You can’t deliver medical care in the home or hospital without paying attention to this interface, and it has a disproportionate impact on patient satisfaction. People assume you can transplant a liver, but if you can’t pull leads off without hurting them, you’re not providing good care.”


The Skin Sciences Institute has established collaborative relationships with major companies involved in skin care as well as skin barrier structure and function, including the Procter & Gamble Co., the Andrew Jergens Company, Kao Corporation, GOJO Industries, Coloplast Corporation, Kenabo, Becton Dickinson, Vyteris, NOVA Technology Corporation, 3M, and W. L. Gore Industries.

Jim Feuer | EurekAlert!
Further information:
http://www.cincinnatichildrens.org/

More articles from Life Sciences:

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

nachricht A blue stoplight to prevent runaway photosynthesis
27.09.2016 | National Institute for Basic Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

 
Latest News

New switch decides between genome repair and death of cells

27.09.2016 | Life Sciences

Nanotechnology for energy materials: Electrodes like leaf veins

27.09.2016 | Physics and Astronomy

‘Missing link’ found in the development of bioelectronic medicines

27.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>