Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study discovers key to baby-like skin

07.05.2003


For nine months before birth, infants soak in a watery, urine-filled environment. Just hours after birth, however, they have near-perfect skin. How is it that nature enables infants to develop ideal skin in such seemingly unsuitable surroundings?



A new study by researchers at the Skin Sciences Institute of Cincinnati Children’s Hospital Medical Center shows that the answer may be vernix -- the white, cheesy substance that coats infants for weeks before they are born, then is wiped off and discarded immediately after birth. If they’re right, the healthcare implications for newborns and adults could be remarkable.

The study, to be presented May 6 at the annual meeting of the Pediatric Academic Societies in Seattle, shows that newborn skin with vernix left intact “is more hydrated, less scaly, and undergoes a more rapid decrease in pH than with vernix removed,” says Marty Visscher, PhD, executive director of the Skin Sciences Institute and the study’s main author. “These beneficial effects of vernix suggest that it should be left intact at birth.”


Vernix is a complex mixture of lipids (fats), proteins and water. Babies born at 32 to 33 weeks are covered with the material. Those who are born full term have already lost a good portion of it. The researchers studied full-term infants, half of whom had vernix wiped off and half left intact on the surface of the skin. Skin hydration, moisture accumulation rate, skin pH and visual dryness were measured at one, four and 24 hours after birth.

Skin Sciences Institute researchers have been studying vernix for several years and found that it is not only a moisturizer but also a wound healer, cleanser, anti-infective and antioxidant. Cincinnati Children’s has obtained four patents on vernix technology and hopes to formulate a synthetic equivalent that could be used in a variety of ways: as a film on products ranging from diapers to wound dressings; as a replacement for vernix in low-birthweight, premature infants who are born before vernix develops at about 27 weeks; as a cream or lotion for topical needs; and as a delivery system for other medications.

“We view the production of vernix as analogous to infant formula as a substitute for milk,” says Dr. Visscher. “Nature has figured out how to make it. Long term, we hope to be able to mass produce a synthetic equivalent. There is nothing out there now to take care of these preterm babies, and the list of other applications for vernix is endless.”

The Skin Sciences Institute views infant skin as ideal skin and focuses on the skin as a primary care interface – a biological spacesuit that separates outer from inner space. “Skin is the largest organ in the body, yet it’s often treated as insignificant,” says Stephen Hoath, MD, a neonatologist, medical director of the Skin Sciences Institute and co-author of the study. “You can’t deliver medical care in the home or hospital without paying attention to this interface, and it has a disproportionate impact on patient satisfaction. People assume you can transplant a liver, but if you can’t pull leads off without hurting them, you’re not providing good care.”


The Skin Sciences Institute has established collaborative relationships with major companies involved in skin care as well as skin barrier structure and function, including the Procter & Gamble Co., the Andrew Jergens Company, Kao Corporation, GOJO Industries, Coloplast Corporation, Kenabo, Becton Dickinson, Vyteris, NOVA Technology Corporation, 3M, and W. L. Gore Industries.

Jim Feuer | EurekAlert!
Further information:
http://www.cincinnatichildrens.org/

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>