Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team jams bacteria ’talk’ to boost bio-product yields

06.05.2003


In studies that could be vital to an expanding field of industrial biotechnology, scientists at the Center for Biosystems Research are learning to censor what E.coli bacteria are ’talking’ about.

Cell-to-cell cross talking by laboratory E. coli strains engineered to produce antibiotics, industrial polymers or other products in fermentation vessels can lead to stress in the culture and severely limit product output. But scientists with CBR and partners have begun to decipher and override stress ’talk’ among cells of recombinant E. coli. CBR is part of the University of Maryland Biotechnology Institute (UMBI).

In separate fermentation experiments with strains of E. coli that produce two important model products--interleukin-2 or organophosphorus hydrolase--the team increased product output by three to four times. The first product is an important drug in preventing cancer and HIV. The latter is a detoxifying agent for biowarfare nerve agents.



The scientists achieved higher yields of both products by either conditioning the bacterial cultures with high levels of molecules from a signaling pathway called AI-2, or by splicing the LuxS gene for quorum signaling into the recombinant E. coli.

"This is great," says team leader William Bentley, CBR research professor. "We want to understand what are the receptor molecules on these cells, to understand the communication circuitry," he adds. The experimental techniques are applicable to boosting production of many other products in E. coli cultures. However, the researchers say they are only beginning to understand and control the communications circuitry of E. coli and other bacterial cells.

E. coli is a common enteric bacterium that is one of the most highly studied microbes, with its genome and basic physiology well known. It is also one of the easiest vehicles for genetic engineering and a workhorse for metabolic engineering, an emerging branch of industrial biotechnology. Metabolic engineers study interactions of biological molecules in order to improve the manufacture of cell products and proteins for therapeutic and industrial value.

At CBR, Bentley heads one of a very few metabolic engineering laboratories focused on non-pathogenic E. coli quorum sensing. "We first learned that when you grow E. coli in a fermentor, the resulting product per cell goes down to a third of what it was (on the laboratory bench), but you still make more cells. Why don’t they make as much at high cell density as low cell density? We decided to look at what changes are going on." The team also includes Matthew P. DeLisa, formerly of Bentley’s laboratory and currently with Cornell University; and James J. Valdes, U.S. Army Soldier & Biological Chemical Command, Aberdeen Proving Grounds, Md.

Scientists have known about chemical cross-talking among cells of bacteria since 1970. Through such communication, bacteria gauge their own population density and respond by altering their expression of specific genes as a group, a process known as quorum sensing. In marine microbes, quorum-sensing molecules speed up reproduction to form bio-fouling films that may colonize on surfaces of boats or piers. Pathogenic bacteria, such as those that cause cholera, salmonella, Lyme disease, tuberculosis and pneumonia, become virulent. Still others such as Anthrax may form spores when they reach a quorum, or make antibiotics to fight off neighboring microbes.

But studies of cell-to-cell ’talking’ in E. coli, so important to industrial biotechnology, have lagged behind somewhat. Scientists at Princeton University discovered signaling molecules in E. coli in 1998.

Bentley’s team is investigating recombinant E. coli in the context of "an emerging centralized role for quorum sensing where it overlaps with signals for stress and starvation," he says. This new link between quorum sensing, cellular metabolism and stress-responsive circuits raises the possibility of targeting quorum pathways for improving cellular productivity.

They observed that signaling in recombinant E. coli, decreased the yields of a desired protein product. There had been no previously published reports of experiments to use quorum-sensing signaling pathway molecules or genes to improve recombinant protein yield in any bacteria expression system.

The team began two years ago by mapping DNA transcription of four quorum-regulated genes and 20 stress genes of E. coli. They found significant regulatory overlap among several stress and starvation genes and known quorum-sensing genes. "Because quorum-sensing signals turn bacterial genes on and off, deciphering this language will enable us to commandeer it for our own purposes, like controlling protein and metabolic engineering, rewiring cells, you might say, to produce important polymers or try to figure out the coordination of the enzymatic pathways. This is just the very beginning."

Such biological processing (fermentation) to produce products is more desirable than traditional industrial processing because of the use of renewable resources such as E. coli bacteria. It is more energy efficient and cleaner processing.


Researcher e-mails: bentley@eng.umd.edu, delisa@che.utexas.edu.

The University of Maryland Biotechnology Institute was mandated by the state of Maryland legislature in 1985 as "a new paradigm of state economic development in biotech-related sciences." With five major research and education centers across Maryland, UMBI is dedicated to advancing the frontiers of biotechnology. The centers are the Center for Advanced Research in Biotechnology in Rockville; Center for Biosystems Research in College Park; and Center of Marine Biotechnology, Medical Biotechnology Center, and the Institute of Human Virology, all in Baltimore. To license UMBI technology, contact Technology Transfer Director Rita Khanna, 410.385.6324.

Steve Berberich | EurekAlert!
Further information:
http://www.umbi.umd.edu/

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>