Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Big red jelly surprises scientists

06.05.2003


Big Red (Tiburonia granrojo) can reach up to a meter across. The jelly was "discovered" and named by researchers at the Monterey Bay Aquarium Research Institute (MBARI).
This photograph was taken during a remotely operated vehicle (ROV) dive on the Gumdrop Seamount under the direction of scientist Dave Clague.
Photo copyright © 2002 MBARI


In photographs, it looks like a big red spaceship cruising the ocean depths. But it’s actually a new species of jelly that was discovered and described by scientists at the Monterey Bay Aquarium Research Institute. MBARI scientists published their research on this unusual animal in a recent online version of the journal Marine Biology.

With a bell diameter of up to a meter wide, the new jelly, named Tiburonia granrojo or "big red," would seem tough to miss, except that it lives deep below the ocean’s surface, at depths of 650 to 1500 meters (2000 to 4800 feet). MBARI scientists observed the jelly using video cameras on deep-diving remotely operated vehicles (ROVs). In fact, the jelly is named after MBARI’s ROV Tiburon.

Although MBARI scientists saw this jelly during ROV dives as early as 1993, it was not recognized as a new species until several years later. George Matsumoto, MBARI biologist and lead author of the paper, was first called in to identify the jelly after it was seen during 1998 geology expedition.



"Diving almost every day, we tend to take for granted some of the unusual and even bizarre animals that we see in the deep ocean." Matsumoto explains. "This just shows that we need to keep our eyes open, because there’s still plenty to discover down there."

Matsumoto immediately guessed that he was looking at a new species, but that was just the first step in classifying and naming the creature. First Matsumoto conducted an extensive literature search to make sure that the animal had not already been described. Then he and fellow researcher Kevin Raskoff consulted MBARI’s video annotation database. This database allows MBARI researchers to search through 15 years of dive videos to find all dives during which a particular animal was seen. By reviewing all of the observations of "big red," they were able to learn about the jelly’s typical size and geographic range.

Although first observed in the Pacific Ocean off California, MBARI scientists have also seen T. granrojo in deep waters near the Hawaiian Islands and, most recently, in the Gulf of California. To further extend the jelly’s range, Matsumoto and Raskoff worked with scientists at the Japan Marine Science and Technology Center, who spotted the jelly in Japanese waters.

T. granrojo is not just a new species and genus. It is so different from other jellies that it had to be assigned to a new subfamily (Tiburoniinae). Its large size and deep red color are distinctive. But what really sets T. granrojo apart is that, unlike most jellies, it has no tentacles. Instead, it uses its four to seven fleshy arms to capture food. Researchers were particularly surprised to find that the number of arms varies from individual to individual, because this is generally a diagnostic feature for determining different jelly species.

In some ways, naming the jelly was the easy part, as Matsumoto observes: "There are still so many unanswered questions about this jelly. What does it eat? Who are its predators? How does it reproduce? We have an idea of where it lives and continue to document sightings, but we have much to learn about its role in the ecosystem."

Like many oceanographic findings, the discovery of "big red" was the result of perseverance, luck, careful use of technology, and cooperation between scientists of different disciplines. The fact that scientists could miss something so big and with such a wide range suggests that many more surprises await us in our exploration of the deep sea.


Research article
Matsumoto, G.I., K. Raskoff, and D. Lindsay (2003). Tiburonia granrojo n. sp., a mesopelagic scyphomedusa from the Pacific Ocean representing the type of a new subfamily (class Scyphozoa: order Semaeostomeae: family Ulmaridae: subfamily Tiburoniinae subfam. nov.). Marine Biology, DOI: 10.1007/s00227-003-1047-2.

Debbie Meyer | MBARI
Further information:
http://www.mbari.org/

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>