Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Big red jelly surprises scientists

06.05.2003


Big Red (Tiburonia granrojo) can reach up to a meter across. The jelly was "discovered" and named by researchers at the Monterey Bay Aquarium Research Institute (MBARI).
This photograph was taken during a remotely operated vehicle (ROV) dive on the Gumdrop Seamount under the direction of scientist Dave Clague.
Photo copyright © 2002 MBARI


In photographs, it looks like a big red spaceship cruising the ocean depths. But it’s actually a new species of jelly that was discovered and described by scientists at the Monterey Bay Aquarium Research Institute. MBARI scientists published their research on this unusual animal in a recent online version of the journal Marine Biology.

With a bell diameter of up to a meter wide, the new jelly, named Tiburonia granrojo or "big red," would seem tough to miss, except that it lives deep below the ocean’s surface, at depths of 650 to 1500 meters (2000 to 4800 feet). MBARI scientists observed the jelly using video cameras on deep-diving remotely operated vehicles (ROVs). In fact, the jelly is named after MBARI’s ROV Tiburon.

Although MBARI scientists saw this jelly during ROV dives as early as 1993, it was not recognized as a new species until several years later. George Matsumoto, MBARI biologist and lead author of the paper, was first called in to identify the jelly after it was seen during 1998 geology expedition.



"Diving almost every day, we tend to take for granted some of the unusual and even bizarre animals that we see in the deep ocean." Matsumoto explains. "This just shows that we need to keep our eyes open, because there’s still plenty to discover down there."

Matsumoto immediately guessed that he was looking at a new species, but that was just the first step in classifying and naming the creature. First Matsumoto conducted an extensive literature search to make sure that the animal had not already been described. Then he and fellow researcher Kevin Raskoff consulted MBARI’s video annotation database. This database allows MBARI researchers to search through 15 years of dive videos to find all dives during which a particular animal was seen. By reviewing all of the observations of "big red," they were able to learn about the jelly’s typical size and geographic range.

Although first observed in the Pacific Ocean off California, MBARI scientists have also seen T. granrojo in deep waters near the Hawaiian Islands and, most recently, in the Gulf of California. To further extend the jelly’s range, Matsumoto and Raskoff worked with scientists at the Japan Marine Science and Technology Center, who spotted the jelly in Japanese waters.

T. granrojo is not just a new species and genus. It is so different from other jellies that it had to be assigned to a new subfamily (Tiburoniinae). Its large size and deep red color are distinctive. But what really sets T. granrojo apart is that, unlike most jellies, it has no tentacles. Instead, it uses its four to seven fleshy arms to capture food. Researchers were particularly surprised to find that the number of arms varies from individual to individual, because this is generally a diagnostic feature for determining different jelly species.

In some ways, naming the jelly was the easy part, as Matsumoto observes: "There are still so many unanswered questions about this jelly. What does it eat? Who are its predators? How does it reproduce? We have an idea of where it lives and continue to document sightings, but we have much to learn about its role in the ecosystem."

Like many oceanographic findings, the discovery of "big red" was the result of perseverance, luck, careful use of technology, and cooperation between scientists of different disciplines. The fact that scientists could miss something so big and with such a wide range suggests that many more surprises await us in our exploration of the deep sea.


Research article
Matsumoto, G.I., K. Raskoff, and D. Lindsay (2003). Tiburonia granrojo n. sp., a mesopelagic scyphomedusa from the Pacific Ocean representing the type of a new subfamily (class Scyphozoa: order Semaeostomeae: family Ulmaridae: subfamily Tiburoniinae subfam. nov.). Marine Biology, DOI: 10.1007/s00227-003-1047-2.

Debbie Meyer | MBARI
Further information:
http://www.mbari.org/

More articles from Life Sciences:

nachricht New switch decides between genome repair and death of cells
27.09.2016 | University of Cologne - Universität zu Köln

nachricht A blue stoplight to prevent runaway photosynthesis
27.09.2016 | National Institute for Basic Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

 
Latest News

New imaging technique in Alzheimer’s disease - opens up possibilities for new drug development

28.09.2016 | Medical Engineering

Innovate coating extends the life of materials for industrial use

28.09.2016 | Materials Sciences

Blockchain Set to Transform the Financial Services Market

28.09.2016 | Business and Finance

VideoLinks
B2B-VideoLinks
More VideoLinks >>>