Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists produce mouse eggs from embryonic stem cells, demonstrating totipotency even in vitro

02.05.2003


Researchers at the University of Pennsylvania have created the first mammalian gametes grown in vitro directly from embryonic stem cells. The work, in which mouse stem cells placed in Petri dishes -- without any special growth or transcription factors -- grew into oocytes and then into embryos, will be reported this week on the web site of the journal Science.



The results demonstrate that even outside the body embryonic stem cells remain totipotent, or capable of generating any of the body’s tissues, said lead researcher Hans R. Schöler of Penn’s School of Veterinary Medicine.

"Most scientists have thought it impossible to grow gametes from stem cells outside the body, since earlier efforts have yielded only somatic cells," said Schöler, professor of reproduction medicine and director of Penn’s Center for Animal Transgenesis and Germ Cell Research. "We found that not only can mouse embryonic stem cells produce oocytes, but that these oocytes can then enter meiosis, recruit adjacent cells to form structures similar to the follicles that surround and nurture natural mouse eggs, and develop into embryos."


Schöler said oocyte development in vitro may offer a new way for embryonic stem cells to be produced artificially, sidestepping the ethical concerns articulated by President Bush and others. Implanting a regular nucleus from any of the body’s cells into such an oocyte would yield a totipotent stem cell.

The findings may force legal revisions in nations such as Germany whose lawmakers, assuming that stem cells’ potency outside the body was limited, have passed legislation banning research with totipotent stem cells.

The Penn scientists pulled off this feat using a gene called Oct4 as a genetic marker. After the stem cells were plated in a regular Petri dish -- densely but without special feeder cells or growth factors -- the scientists used fluorescent markers linked to Oct4 and other telltale genes to assay oocyte development. After 12 days in culture, the cells organized into colonies of variable size. Shortly thereafter, individual cells detached from these colonies.

"These germ cells then accumulated a coating of cells similar to the follicles surrounding mammalian eggs," Schöler said. "Starting on day 26, oocyte-like cells were released into the culture -- similar to ovulation -- and by day 43, embryo-like structures arose through parthenogenesis, or spontaneous reproduction without sperm."

In the experiment described this week in Science, both male- and female-derived stem cells developed into female gametes. Schöler and colleagues now plan to test whether oocytes developed in vitro can be fertilized.

"We would like to use these oocytes as a basis for therapeutic cloning, and hope that our results can be replicated with human embryonic stem cells," Schöler said.


Schöler was joined in the research by Karin Hübner, James Kehler, Rolland Reinbold, Rabindranath de la Fuente and Michele Boiani of Penn’s School of Veterinary Medicine; Lane K. Christenson, Jennifer Wood and Jerome Strauss III from Penn’s School of Medicine; and Guy Fuhrmann of the Centre de Neurochimie in France. The work was funded by the National Institutes of Health, the Marion Dilley and David George Jones Funds, the Commonwealth and General Assembly of Pennsylvania and the Association pour la Recherche sur la Cancer.

Steve Bradt | EurekAlert!
Further information:
http://www.upenn.edu/

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>