Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists produce mouse eggs from embryonic stem cells, demonstrating totipotency even in vitro

02.05.2003


Researchers at the University of Pennsylvania have created the first mammalian gametes grown in vitro directly from embryonic stem cells. The work, in which mouse stem cells placed in Petri dishes -- without any special growth or transcription factors -- grew into oocytes and then into embryos, will be reported this week on the web site of the journal Science.



The results demonstrate that even outside the body embryonic stem cells remain totipotent, or capable of generating any of the body’s tissues, said lead researcher Hans R. Schöler of Penn’s School of Veterinary Medicine.

"Most scientists have thought it impossible to grow gametes from stem cells outside the body, since earlier efforts have yielded only somatic cells," said Schöler, professor of reproduction medicine and director of Penn’s Center for Animal Transgenesis and Germ Cell Research. "We found that not only can mouse embryonic stem cells produce oocytes, but that these oocytes can then enter meiosis, recruit adjacent cells to form structures similar to the follicles that surround and nurture natural mouse eggs, and develop into embryos."


Schöler said oocyte development in vitro may offer a new way for embryonic stem cells to be produced artificially, sidestepping the ethical concerns articulated by President Bush and others. Implanting a regular nucleus from any of the body’s cells into such an oocyte would yield a totipotent stem cell.

The findings may force legal revisions in nations such as Germany whose lawmakers, assuming that stem cells’ potency outside the body was limited, have passed legislation banning research with totipotent stem cells.

The Penn scientists pulled off this feat using a gene called Oct4 as a genetic marker. After the stem cells were plated in a regular Petri dish -- densely but without special feeder cells or growth factors -- the scientists used fluorescent markers linked to Oct4 and other telltale genes to assay oocyte development. After 12 days in culture, the cells organized into colonies of variable size. Shortly thereafter, individual cells detached from these colonies.

"These germ cells then accumulated a coating of cells similar to the follicles surrounding mammalian eggs," Schöler said. "Starting on day 26, oocyte-like cells were released into the culture -- similar to ovulation -- and by day 43, embryo-like structures arose through parthenogenesis, or spontaneous reproduction without sperm."

In the experiment described this week in Science, both male- and female-derived stem cells developed into female gametes. Schöler and colleagues now plan to test whether oocytes developed in vitro can be fertilized.

"We would like to use these oocytes as a basis for therapeutic cloning, and hope that our results can be replicated with human embryonic stem cells," Schöler said.


Schöler was joined in the research by Karin Hübner, James Kehler, Rolland Reinbold, Rabindranath de la Fuente and Michele Boiani of Penn’s School of Veterinary Medicine; Lane K. Christenson, Jennifer Wood and Jerome Strauss III from Penn’s School of Medicine; and Guy Fuhrmann of the Centre de Neurochimie in France. The work was funded by the National Institutes of Health, the Marion Dilley and David George Jones Funds, the Commonwealth and General Assembly of Pennsylvania and the Association pour la Recherche sur la Cancer.

Steve Bradt | EurekAlert!
Further information:
http://www.upenn.edu/

More articles from Life Sciences:

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

nachricht Self-assembled nanostructures hit their target
23.09.2016 | King Abdullah University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>