Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists produce mouse eggs from embryonic stem cells, demonstrating totipotency even in vitro

02.05.2003


Researchers at the University of Pennsylvania have created the first mammalian gametes grown in vitro directly from embryonic stem cells. The work, in which mouse stem cells placed in Petri dishes -- without any special growth or transcription factors -- grew into oocytes and then into embryos, will be reported this week on the web site of the journal Science.



The results demonstrate that even outside the body embryonic stem cells remain totipotent, or capable of generating any of the body’s tissues, said lead researcher Hans R. Schöler of Penn’s School of Veterinary Medicine.

"Most scientists have thought it impossible to grow gametes from stem cells outside the body, since earlier efforts have yielded only somatic cells," said Schöler, professor of reproduction medicine and director of Penn’s Center for Animal Transgenesis and Germ Cell Research. "We found that not only can mouse embryonic stem cells produce oocytes, but that these oocytes can then enter meiosis, recruit adjacent cells to form structures similar to the follicles that surround and nurture natural mouse eggs, and develop into embryos."


Schöler said oocyte development in vitro may offer a new way for embryonic stem cells to be produced artificially, sidestepping the ethical concerns articulated by President Bush and others. Implanting a regular nucleus from any of the body’s cells into such an oocyte would yield a totipotent stem cell.

The findings may force legal revisions in nations such as Germany whose lawmakers, assuming that stem cells’ potency outside the body was limited, have passed legislation banning research with totipotent stem cells.

The Penn scientists pulled off this feat using a gene called Oct4 as a genetic marker. After the stem cells were plated in a regular Petri dish -- densely but without special feeder cells or growth factors -- the scientists used fluorescent markers linked to Oct4 and other telltale genes to assay oocyte development. After 12 days in culture, the cells organized into colonies of variable size. Shortly thereafter, individual cells detached from these colonies.

"These germ cells then accumulated a coating of cells similar to the follicles surrounding mammalian eggs," Schöler said. "Starting on day 26, oocyte-like cells were released into the culture -- similar to ovulation -- and by day 43, embryo-like structures arose through parthenogenesis, or spontaneous reproduction without sperm."

In the experiment described this week in Science, both male- and female-derived stem cells developed into female gametes. Schöler and colleagues now plan to test whether oocytes developed in vitro can be fertilized.

"We would like to use these oocytes as a basis for therapeutic cloning, and hope that our results can be replicated with human embryonic stem cells," Schöler said.


Schöler was joined in the research by Karin Hübner, James Kehler, Rolland Reinbold, Rabindranath de la Fuente and Michele Boiani of Penn’s School of Veterinary Medicine; Lane K. Christenson, Jennifer Wood and Jerome Strauss III from Penn’s School of Medicine; and Guy Fuhrmann of the Centre de Neurochimie in France. The work was funded by the National Institutes of Health, the Marion Dilley and David George Jones Funds, the Commonwealth and General Assembly of Pennsylvania and the Association pour la Recherche sur la Cancer.

Steve Bradt | EurekAlert!
Further information:
http://www.upenn.edu/

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>