Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ingenium publishes groundbreaking research on genetic basis for motor neuron degeneration

02.05.2003


Results from Model-based functional genomics research provides new insight on the pathogenetic mechanism which causes diseases such as ALS



Ingenium Pharmaceuticals AG and a coalition of international research organizations announced today the publication in Science of research describing a fundamental discovery about the genetic and molecular basis for Motor Neuron Disease (MND), which includes Amyotrophic Lateral Sclerosis (ALS). The research explains a key pathogenetic mechanism of motor neuron degeneration, potentially opening new therapeutic avenues for treating motor neuron diseases including ALS, also known as Lou Gehrig’s Disease, the third most common neurodegenerative disease after Alzheimer’s and Parkinson’s. The research was conducted by Ingenium; University College London; the Queen Mary, University of London; UK Cancer Research; Munich Technical University; and the German National Research Center for Environment and Health. The UK work to find the gene mutation in the mouse was funded by the Motor Neurone Disease Association.

Today’s Science publication explains the mechanism for how widely-expressed genes can cause selective death of motor neurons, resulting in MND. By identifying two specific mutations in the same gene, the combined research group has produced a precise mammalian model of MND and described the pathogenetic link between specific gene mutations and selective, progressive degeneration of motor neurons. The research groups initially began their research with two distinct mouse models of late-onset MND and traced the genetic cause of the symptoms to specific point mutations in one gene, Dnchc1. Based on that discovery, the combined research team defined that the mutations in the Dnchc1 gene impaired axonal transport in the nerve cell, which specifically caused cell-death in motor neurons without affecting other cell types. This type of selective motor neuron degeneration is clinically similar on a cellular and organismal level to the human disease state seen in ALS and other motor neuron diseases.


"This publication is exciting as it provides a fundamental step toward explaining the pathobiology that results in MND, but it also, although at an early stage, could significantly impact our understanding of neurodegeneration in general," commented Dr. Gabriele Stumm, study co-author and Director of the Neurobiology Program at Ingenium. "The key discovery is that an inherited moderate impairment of nerve cell transport functions indeed can result in age dependent distinct motor neurodegeneration. This finding was enabled by Ingenium’s research approach and our valuable collaboration with the UCL and detected in the neuropathology laboratories of Prof. Joanne E. Martin, Queen Mary, University of London, and Prof. Juergen Schlegel, TU Munich."

"The pathogenetic link between specific gene mutations and selective, progressive degeneration of motor neurons has been the fundamental question in MND research," stated Professor Elizabeth Fisher of the Department of Neurodegenerative Disease at the National Hospital for Neurology & Neurosurgery at UCL. "Using similar technology, both research groups identified a mutated gene which provides an answer to this question."

The research teams used ethylnitrosourea (ENU) as a chemical mutagen to produce random point mutations in the mouse genome. The researchers identified a mouse phenotype that displayed progressive loss of muscle tone and locomotor ability, in a similar fashion to the ALS disease progression in humans, and the research groups performed positional cloning to locate the mutated gene responsible. The collaborative research began with the further biological analysis of the two models and the respective similarities produced by two different missense mutations. The findings reported are also important in demonstrating the value of random point mutation research in a model system since prior studies of the particular gene in knock-out animal models produced embryonic lethalities, with no discernable link to MND research.

"The ability to correlate a biological phenotype similar to a human disease state with a specific gene mutation is a powerful approach to discovering biological mechanisms that will have real importance in developing new therapeutics," said Dr. Michael C. Nehls, Chief Executive and Chief Scientific Officer of Ingenium. "The next step for Ingenium’s research is to demonstrate the application of this knowledge to the human disease and we are moving forward with this in collaboration with the University of Ulm and Professor Ludolph, a noted specialist in treating ALS patients."


###
The paper published in the May 2, 2003 issue, Vol. 300, Nr. 5620, pages 808-812 is entitled "Mutations in dynein link motor neuron degeneration to defects in retrograde transport". Contributing authors include M. Hafezparast, R. Klocke, C. Ruhrberg, A. Marquardt, A. Ahmad-Annuar, S. Bowen, G. Lalli, A. S. Witherden, H. Hummerich, S. Nicholson, P.J. Morgan, R. Oozageer, J. V. Priestley, S. Averill, V. R. King, S. Ball, J. Peters, T. Toda, A. Yamamoto, M. Augustin, D. Korthaus, S. Wattler, P. Wabnitz, C. Dickneite, S. Lampel, F. Boehme, G. Peraus, A. Popp, M. Rudelius, J. Schlegel, H. Fuchs, M. Hrabe de Angelis, G. Schiavo, D. T. Shima, A. P. Russ, G. Stumm, J. E. Martin and E. M.C. Fisher.

The basis of Ingenium’s business is its knowledge and expertise in generating the biological information critical to the discovery, validation and development of therapeutics. Ingenium’s biology-based target discovery technology, Deductive GenomicsTM, involves a functional genomics analysis of an entire mammalian genome to locate novel therapeutic entry points to treat disease. From the breadth of knowledge generated by Deductive GenomicsTM, Ingenium is currently advancing a pipeline of novel models and biologically validated drug targets in the areas of obesity, lipid metabolism, neurodegeneration and autoimmune disease. Ingenium has research partnership agreements with Elan Corporation, F. Hoffmann-La Roche Ltd., Sequenom Inc. and Lynkeus BioTech GmbH, in addition to numerous international academic collaborations. The company benefits from funding from premier investors, an experienced management team, top industry advisors and a growing patent portfolio.

Gretchen Schweitzer | EurekAlert!
Further information:
http://www.ingenium-ag.com/

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>