Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A switch that makes a blood clot sticky found within the platelet membrane

02.05.2003


One key to platelet integrin receptor found in transmembrane region



Integrin receptors allow cells to attach to other cells and to connective tissue which is necessary to form tissues, organs, or even people, for that matter. Researchers at the University of Pennsylvania School of Medicine have demonstrated that a key to activating αIIbβ3, the integrin that allows platelets to form blood clots, can be found in the part of the molecule embedded within a platelet’s outer membrane.

The αIIbβ3 integrin, also known as the platelet fibrinogen receptor or GP IIb-IIIa, has been the focus of an entire class of blood-thinning drugs, called GPIIb-IIIa agonists. The Penn researchers findings, published in this week’s issue of Science, have implications for drugs created to thin the blood and, perhaps more broadly, offer an intriguing hint as to how integrins on cells throughout the body may function.


"The part of the GPIIb-IIIa molecule that is embedded in the fatty layers that constitute the platelet’s outer membrane can determine whether or not the integrin is activated, thereby making the platelet ’sticky,’" said Joel S. Bennett, MD, Professor in Penn’s Division of Hematology/Oncology within the Department of Medicine. "The transmembrane region, which was generally assumed to be just an anchor for keeping the integrin receptor in place, can be an activating switch for the entire molecule."

Once activated, the two subunits of GPIIb-IIIa that extend outside the cell can clasp the walls of a damaged blood vessel or a passing fibrinogen molecule ¡V much like a bobby pin can close around strands of hair ¡V thereby forming a normal blood clot or a pathologic thrombus. GPIIb-IIIa agonist drugs, such as ReoPro®, Integrilin®, and Aggrastat®, work by preventing activated GPIIb-IIIa from binding to other objects in the bloodstream.

Since it is a protein, GPIIb-IIIa is made up of amino acids, strung along in a specific sequence to give the protein its shape. Bennett and his colleagues were able to determine which amino acids are responsible for activating GPIIb-IIIa by substituting a ’wrong’ amino acid at spaces along the  protein chain and expressing the mutant protein in cells growing in culture. They found that the transmembrane portion of one of the GPIIb-IIIa subunits is responsible for responding to activation signals and, in return, causing groups of the activated integrin to cluster.

"Remarkably, these regions are evolutionarily conserved ¡V meaning the transmembrane region in GPIIb-IIIa is the same in apes or rabbits or mice as they are in humans," said Bennett. "That tells us that the sequences of the transmembrane region of integrins are important factors in how these proteins function."

Moreover, nearly every integrin has a different transmembrane region made up of a unique amino acid sequence. If the transmembrane regions of all integrins work on a similar scheme, it would provide a new paradigm for the function of integrins and other cell membrane proteins.

"Integrin receptors are more than just a cellular form of Velcro ¡V as integrins bind, they can also generate signals that command a cell to act, such as whether to divide or differentiate or to produce an important protein such as a gene transcription factor," said Bennett. "It will be interesting, and even medically important, to determine how these signals can be modulated."

Other scientists involved in the research paper described here include Renhao Li, Neal Mitra, Holly Gratkowski, Gaston Vilaire, Reustem Litvinov, Chandrasekaran Nagasami, John Weisel, James D. Lear, and William F. DeGrado from Penn.

Greg Lester | EurekAlert!
Further information:
http://www.med.upenn.edu/

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Speed data for the brain’s navigation system

06.12.2016 | Health and Medicine

What happens in the cell nucleus after fertilization

06.12.2016 | Life Sciences

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>