Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A switch that makes a blood clot sticky found within the platelet membrane


One key to platelet integrin receptor found in transmembrane region

Integrin receptors allow cells to attach to other cells and to connective tissue which is necessary to form tissues, organs, or even people, for that matter. Researchers at the University of Pennsylvania School of Medicine have demonstrated that a key to activating αIIbβ3, the integrin that allows platelets to form blood clots, can be found in the part of the molecule embedded within a platelet’s outer membrane.

The αIIbβ3 integrin, also known as the platelet fibrinogen receptor or GP IIb-IIIa, has been the focus of an entire class of blood-thinning drugs, called GPIIb-IIIa agonists. The Penn researchers findings, published in this week’s issue of Science, have implications for drugs created to thin the blood and, perhaps more broadly, offer an intriguing hint as to how integrins on cells throughout the body may function.

"The part of the GPIIb-IIIa molecule that is embedded in the fatty layers that constitute the platelet’s outer membrane can determine whether or not the integrin is activated, thereby making the platelet ’sticky,’" said Joel S. Bennett, MD, Professor in Penn’s Division of Hematology/Oncology within the Department of Medicine. "The transmembrane region, which was generally assumed to be just an anchor for keeping the integrin receptor in place, can be an activating switch for the entire molecule."

Once activated, the two subunits of GPIIb-IIIa that extend outside the cell can clasp the walls of a damaged blood vessel or a passing fibrinogen molecule ¡V much like a bobby pin can close around strands of hair ¡V thereby forming a normal blood clot or a pathologic thrombus. GPIIb-IIIa agonist drugs, such as ReoPro®, Integrilin®, and Aggrastat®, work by preventing activated GPIIb-IIIa from binding to other objects in the bloodstream.

Since it is a protein, GPIIb-IIIa is made up of amino acids, strung along in a specific sequence to give the protein its shape. Bennett and his colleagues were able to determine which amino acids are responsible for activating GPIIb-IIIa by substituting a ’wrong’ amino acid at spaces along the  protein chain and expressing the mutant protein in cells growing in culture. They found that the transmembrane portion of one of the GPIIb-IIIa subunits is responsible for responding to activation signals and, in return, causing groups of the activated integrin to cluster.

"Remarkably, these regions are evolutionarily conserved ¡V meaning the transmembrane region in GPIIb-IIIa is the same in apes or rabbits or mice as they are in humans," said Bennett. "That tells us that the sequences of the transmembrane region of integrins are important factors in how these proteins function."

Moreover, nearly every integrin has a different transmembrane region made up of a unique amino acid sequence. If the transmembrane regions of all integrins work on a similar scheme, it would provide a new paradigm for the function of integrins and other cell membrane proteins.

"Integrin receptors are more than just a cellular form of Velcro ¡V as integrins bind, they can also generate signals that command a cell to act, such as whether to divide or differentiate or to produce an important protein such as a gene transcription factor," said Bennett. "It will be interesting, and even medically important, to determine how these signals can be modulated."

Other scientists involved in the research paper described here include Renhao Li, Neal Mitra, Holly Gratkowski, Gaston Vilaire, Reustem Litvinov, Chandrasekaran Nagasami, John Weisel, James D. Lear, and William F. DeGrado from Penn.

Greg Lester | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>