Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A switch that makes a blood clot sticky found within the platelet membrane

02.05.2003


One key to platelet integrin receptor found in transmembrane region



Integrin receptors allow cells to attach to other cells and to connective tissue which is necessary to form tissues, organs, or even people, for that matter. Researchers at the University of Pennsylvania School of Medicine have demonstrated that a key to activating αIIbβ3, the integrin that allows platelets to form blood clots, can be found in the part of the molecule embedded within a platelet’s outer membrane.

The αIIbβ3 integrin, also known as the platelet fibrinogen receptor or GP IIb-IIIa, has been the focus of an entire class of blood-thinning drugs, called GPIIb-IIIa agonists. The Penn researchers findings, published in this week’s issue of Science, have implications for drugs created to thin the blood and, perhaps more broadly, offer an intriguing hint as to how integrins on cells throughout the body may function.


"The part of the GPIIb-IIIa molecule that is embedded in the fatty layers that constitute the platelet’s outer membrane can determine whether or not the integrin is activated, thereby making the platelet ’sticky,’" said Joel S. Bennett, MD, Professor in Penn’s Division of Hematology/Oncology within the Department of Medicine. "The transmembrane region, which was generally assumed to be just an anchor for keeping the integrin receptor in place, can be an activating switch for the entire molecule."

Once activated, the two subunits of GPIIb-IIIa that extend outside the cell can clasp the walls of a damaged blood vessel or a passing fibrinogen molecule ¡V much like a bobby pin can close around strands of hair ¡V thereby forming a normal blood clot or a pathologic thrombus. GPIIb-IIIa agonist drugs, such as ReoPro®, Integrilin®, and Aggrastat®, work by preventing activated GPIIb-IIIa from binding to other objects in the bloodstream.

Since it is a protein, GPIIb-IIIa is made up of amino acids, strung along in a specific sequence to give the protein its shape. Bennett and his colleagues were able to determine which amino acids are responsible for activating GPIIb-IIIa by substituting a ’wrong’ amino acid at spaces along the  protein chain and expressing the mutant protein in cells growing in culture. They found that the transmembrane portion of one of the GPIIb-IIIa subunits is responsible for responding to activation signals and, in return, causing groups of the activated integrin to cluster.

"Remarkably, these regions are evolutionarily conserved ¡V meaning the transmembrane region in GPIIb-IIIa is the same in apes or rabbits or mice as they are in humans," said Bennett. "That tells us that the sequences of the transmembrane region of integrins are important factors in how these proteins function."

Moreover, nearly every integrin has a different transmembrane region made up of a unique amino acid sequence. If the transmembrane regions of all integrins work on a similar scheme, it would provide a new paradigm for the function of integrins and other cell membrane proteins.

"Integrin receptors are more than just a cellular form of Velcro ¡V as integrins bind, they can also generate signals that command a cell to act, such as whether to divide or differentiate or to produce an important protein such as a gene transcription factor," said Bennett. "It will be interesting, and even medically important, to determine how these signals can be modulated."

Other scientists involved in the research paper described here include Renhao Li, Neal Mitra, Holly Gratkowski, Gaston Vilaire, Reustem Litvinov, Chandrasekaran Nagasami, John Weisel, James D. Lear, and William F. DeGrado from Penn.

Greg Lester | EurekAlert!
Further information:
http://www.med.upenn.edu/

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>