Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify important function of NF2 tumor suppressor

02.05.2003


Protein plays role in inherited cancer syndrome, may be key to other tumors



A research team based at Massachusetts General Hospital (MGH) has identified a key cellular function of a protein known to be involved in the rare genetic disorder neurofibromatosis type 2 (NF2). The protein, called merlin, plays a key role in cell-to-cell communication and may be involved in other types of cancer. The discovery also may support the theory that some tumors are destined to spread or metastasize from the outset, rather than gaining the ability to spread as they develop. The report appears in the May 1, 2003, issue of Genes & Development.

NF2 is a rare inherited disorder characterized by multiple tumors of the spine and brain. The NF2 gene was discovered in 1993 by researchers from MGH and elsewhere. At the time of its discovery it was apparent that the NF2 gene was a tumor suppressor, but its exact function was unclear. The protein encoded by the NF2 gene, given the name merlin, was found at the interface of the cell membrane with the cytoskeleton, a network of filaments that supports the cell.


"Since merlin is a tumor suppressor whose loss of function leads to tumor development, it is absolutely critical to define what happens when this function is lost," says Andrea McClatchey, PhD, of the MGH Cancer Center, the senior author of the current report. "Our objective was to define the primary cellular and molecular consequences of that loss of function."

McClatchey and her colleagues had previously developed a strain of mice genetically engineered to lack normal Nf2 genes. This animal model allowed them to identify the gene’s function by comparing cells from the Nf2-mutant mice with cells of the same type from normal mice. They found that, while the Nf2-deficient cells looked normal and multiplied normally, they did not stop multiplying when they came into contact with other cells in the culture dish. The normal cells stopped growing when they filled the culture dish, but the Nf2-deficient cells kept piling up on each other, suggesting that the cells could not sense they were touching other cells.

Followup experiments showed that the Nf2-deficient cells were lacking key cellular structures called adherens junctions. Located in the cell membrane, adherens junctions connect adjacent cells and are known to play a role in cell-to-cell communications. The researchers found merlin in the adherens junctions of normal cells and discovered that adding normal merlin protein to cultures of Nf2-deficient cells restored both the formation of adherens junctions and contact-dependent growth inhibition.

"Our study suggests that, through its link to the cellular cytoskeleton, merlin normally organizes the structure that facilitates cell-to-cell communication – the adherens junction," says McClatchey, who is an assistant professor of Pathology at Harvard Medical School. "Loss of junction integrity has been linked to both tumor development and tumor invasion, providing an explanation for the striking development of metastatic cancer in Nf2-mutant mice,"

McClatchey notes that NF2 mutations in humans have also been associated with mesothelioma, a highly malignant type of lung cancer caused by asbestos exposure, and may be associated with other forms of cancer. She believes that future research may show that NF2 mutations induced by environmental or other factors could play a broader role in cancer development and that strategies to restore or enhance merlin function may lead to potential therapies for NF2-associated cancer.

The current finding also echoes other recent studies that may change some fundamental theories about cancer development. It has been thought that as tumors develop and cells keep mutating, some of them acquire characteristics that enable them to spread beyond the original site, essentially to become malignant. However, some recent studies that examine which genes are expressed or turned on in tumor cells suggest that the capacity to metastasize is inherent from the original tumor-inducing mutation.

"Given that loss of adherens junctions has been linked to both tumor initiation and tumor metastasis," says McClatchey, "loss of NF2 may be an example of an event that both starts a tumor and confers metastatic potential."



McClatchey’s co-authors are first author Dominique Lallemand, PhD, Marcello Curto, MD, PhD, and Ichiko Saotome all of the MGH Cancer Center; and Marco Giovannini, MD, PhD, of INSERM (French National Institute for Health and Medical Research) in Paris. The research was supported by grants from the Amerian Cancer Society, the Department of Defense Neurofibromatosis Program, Ligue Contre le Cancer (France), the National Neurofibromatosis Foundation, and the Association pour la Recherche Contre le Cancer (French Association for Cancer Research).


Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $350 million and major research centers in AIDS, cardiovascular research, cancer, cutaneous biology, neurodegenerative disorders, transplantation biology and photomedicine. In 1994, MGH and BWH joined to form Partners HealthCare System, an integrated health care delivery system comprising the two academic medical centers, specialty and community hospitals, a network of physician groups and nonacute and home health services.

Susan McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu/

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>