Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Riverside scientists contribute to study that unveils genome sequence of bread mold

30.04.2003


A Neurospora colony (bread mold). Photo credit: Douglas Ivey.


New knowledge will provide insight into organisms important to agriculture, medicine, the environment and commerce

In the April 24, 2003, issue of the journal Nature, scientists, including UC Riverside’s Katherine A. Borkovich, assistant professor in the department of plant pathology, and her postdoctoral fellow, Svetlana Krystofova, present the entire list of genes found in the Neurospora genome. (A genome is all the DNA in an organism, including its genes.) The scientists’ analysis promises many new insights into a variety of cellular processes, including environmental sensing, biological clocks, growth and development.

"Knowledge of the genes present in Neurospora will accelerate the analysis of both Neurospora and related fungal species," said Borkovich. "The genome sequence of the model system Neurospora provides a molecular insight into a large group of organisms important to agriculture, medicine, the environment and commerce."



Economic benefits of the research will emanate from the discovery of new targets for control of plant and animal pathogens and from the harnessing of filamentous fungi for the production of novel antibiotics and other secondary metabolites.

Neurospora, commonly known as the orange bread mold, was first described during an infestation of French bakeries in 1843. Domesticated as an experimental organism in the 1920s, Neurospora has been an important model system from that time until today.

"Neurospora is extremely tractable genetically and has been an important research organism for much of the last century," said Borkovich. "For example, the 1958 Nobel Prize winning work of George Beadle and Edward Tatum, which linked together the disciplines of genetics and biochemistry, or genes and proteins, was performed using Neurospora."

The natural habitat of Neurospora was originally thought to be limited to tropical and subtropical regions of the world. But wild isolates of Neurospora have been found in the temperate forests of North America in recent years. Neurospora sexual spores are well-known for their ability to germinate after a forest fire; the resulting colony then utilizes the burnt plant matter as a food source. For this reason, Neurospora can be seen growing in burnt sugar cane fields in hot and humid regions of the world.

Borkovich was involved in the genome analysis project with the Whitehead Institute Center for Genome Research (WICGR) in Cambridge, Mass. "I organized a group of Neurospora scientists from several institutions to analyze the large number of genes involved in growth and development," she said. "The data collected during the analysis phase has been archived and will form the basis of a detailed gene database at the WICGR."

The authors of the Nature paper determined the entire ~40 million basepair sequence of the genome of the filamentous fungus Neurospora. The genome sequence predicts about 10,000 genes, only 25% fewer than that found in the fruit fly Drosophila (14,000 genes) and 50% that of low estimates for the number of genes in humans. The Neurospora sequence is the first for a filamentous fungus and only the third fungal genome sequence that has been determined. The other two sequenced genomes, those of the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, are only about one-half the size of Neurospora.

Borkovich noted that the number of closely-related genes in the Neurospora genome is much lower than predicted from the genome size. "This likely results from the action of a phenomenon termed Repeat-Induced Point mutation or RIP," she explained. RIP is a process that mutates duplicated genes during the sexual cycle in Neurospora, and is thought to provide a defense mechanism to destroy foreign DNA, such as that from invading viruses.

"The impact of Repeat-Induced Point mutation on the genome sequence is important, as it provides a tool to study evolution in an organism that cannot evolve new genes by gene duplication," Borkovich said.

A grant from the National Science Foundation funded the sequencing done at the Whitehead Institute Center for Genome Research. The analysis performed in Borkovich’s laboratory was funded by a grant from the National Institutes of Health.

The Department of Plant Pathology at the University of California, Riverside is committed to conducting research on the basic biology of plant pathogens; developing methods for the control of plant diseases; providing a quality education to its students; and, providing expert advice on plant diseases to the citizens of California and the world. The department has its roots in the Citrus Experiment Station, which was established in Riverside in 1906. Although the department has maintained a strength in the study of diseases of citrus, the interests of the faculty have expanded and now full-fledged programs also exist in the diseases of field crops, vegetables, ornamental plants, turfgrass, and subtropical trees.

Iqbal Pittalwala | UC Riverside
Further information:
http://www.newsroom.ucr.edu/cgi-bin/display.cgi?id=573

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>