Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT lab works to mimic spider silk

30.04.2003


Material (above) created in Paula Hammonds’ MIT lab by graduate students LaShanda James-Korley and Greg Pollock (below) will be spun into a spiderweb-like substance.
PHOTO / DONNA COVENEY


As a fiber, spider silk is so desirable that scientists have spent decades trying to find a way to mimic it. A team at MIT has been tackling the problem from two directions.

“The main goal is to be able to reproduce the enormous energy absorption and strength-bearing properties of spider silk," said Paula T. Hammond, an associate professor in MIT’s Department of Chemical Engineering. "[We want] to be able to obtain a material in large quantities and cheaply … without DNA techniques, which are expensive."

Hammond’s graduate students Greg Pollock and LaShanda James-Korley presented papers on the research at the national meeting of the American Chemical Society on March 23-27. The work is part of a collaborative effort between Hammond and Professor Gareth McKinley of the Department of Mechanical Engineering.



The focus of the work is on creating materials that could create the high-strength fibers needed for artificial tendons, specialty textiles and lightweight bullet-proof gear. A light, tough material like spider silk would be ideal. But unlike sheep or silkworms, spiders cannot be penned in together or raised as a group, making them difficult to domesticate. "They’re territorial and cannibalistic," explained Pollock. Hence scientists’ interest in producing artificial fibers with similar properties to spider silk.

Spider silk is known to be a polymer with two distinct alternating regions. One region is soft and elastic; the other forms small, hard crystallites. It is assumed that this unusual structure is largely responsible for spider silk’s remarkable properties.

MIT researchers want to make a series of different synthetic polymers and study how changes in the chemical structures of the polymers affect the physical properties. This research is done in parallel with research focusing on processing techniques that will maintain the unusual properties of the materials produced.

Scientists at Nexia, a small startup company, have been able to harvest spider silk from the milk of genetically altered goats, but as Pollock explained, that type of solution does not solve the problem entirely. "It’s some fabulous work,” he said, but “no one has really figured out what nature’s done and why it works.

"We’re trying to understand the structure-property relationships by creating our own material with a mechanism for toughness and seeing [if] the structural units produce toughness the same way the amino acids in spider silk produce toughness," he continued.

James-Korley’s work focuses on the soft segment of spider silk. It has been suggested that this soft part has two different regions, one of which is slightly harder than the other because the polymer fibers are partially aligned. If this idea is correct, spider silk actually has three different phases: hard, soft and intermediate. The hard segments anchor the partially aligned regions, holding them in place in a matrix of soft material.

James-Korley has been trying to produce materials with such a structure to test this hypothesis. She has been studying soft-segment polymers made with two different types of materials, hoping that the two materials will form separate phases, the way oil and water do when mixed. When her two-phased soft segments are combined with a hard segment, she will have a three-phase material that she hopes can imitate some of the properties of spider silk.

Pollock is studying a different structural element—the interface between the crystallites in spider silk and the soft region around them. How the interfacial material slides past the crystallites without pulling away from them may hold the key to spider silk’s toughness.

He is trying to build hard, crystalline sections of polymer that include two different materials. When his polymer sections crystallize, one material will form the bulk of the crystallites and the other will form thin layers on the outside of the crystallites. The latter essentially forms the interface between the hard crystallites and the surrounding soft material. Pollock is hoping that by varying the types of materials he uses, he can study the effect of the interface material on the toughness of the overall polymer.

James-Korley and Pollock’s work is part of a larger collaborative effort, which includes a new spinning process that may help create durable fibers from their polymeric materials. This process, called resin-spinning, was developed in the McKinley lab and is being studied in detail by graduate student Nikola Kojic.

This work is funded by the U.S. Army Institute for Soldier Nanotechnologies. James-Korley is also funded by a Lucent Technologies Cooperative Fellowship.

Elizabeth Thomson | MIT
Further information:
http://web.mit.edu/newsoffice/nr/2003/spiderweb.html
http://web.mit.edu/newsoffice/www/

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>